General Principles of Software Validation; Final Guidance for
Industry and FDA Staff

Document issued on: January 11, 2002

This document supersedes the draft document,
"General Principles of
Software Validation, Version 1.1, dated June 9, 1997.

U.S. Department Of Health and Human Services
Food and Drug Administration
Center for Devices and Radiological Health
Center for Biologics Evaluation and Research

Preface FX
Public Comment /87w HaAk

Comments and suggestions may be submitted at any time for Agency consideration to Dockets

Management Branch, Division of Management Systems and Policy, Office of Human Resources
and Management Services, Food and Drug Administration, 5630 Fishers Lane, Room 1061, (HFA-
305), Rockville, MD, 20852. When submitting comments, please refer to the exact title of this
guidance

document. Comments may not be acted upon by the Agency until the document is next revised or

updated.
T AN ERRIT YRICHT 2% EFIH L LT Dockets Management Branch, Division of Management

Systems and Policy, Office of Human Resources and Management Services, Food and Drug Administration, 5630
Fishers Lane, Room 1061, (HFA-305), Rockville, MD, 20852 ~#g& i T& %, =2 A > MZIEHTHERX. AV
AB AR 2 A NOEMERIA MEERDOZ L, RXa Ay MRKREISGTERLT v 77— &
HET, AL MIHT 2 H RO BRI RKITE Sz,

For questions regarding the use or interpretation of this guidance which involve the Center for

Devices and Radiological Health (CDRH), contact John F. Murray at (301) 594-4659 or email

jfm@cdrh.fda.gov

the Center for Devices and Radiological Health (CDRH)X>, A A & > A O HCHERIC B~ 2 B RIIE, &
F6% 5 (301) 594-4659 / email jfm@cdrh.fda.gov {2 C John F. Murray (ZfiW&bHE 5 Z &,

For questions regarding the use or interpretation of this guidance which involve the Center for
Biologics Evaluation and Research (CBER) contact Jerome Davis at (301) 827-6220 or email

davis@cber.fda.gov.
the Center for Biologics Evaluation and Research (CBER)X>, AW A 4 A O ffi I CARARIC B3~ 2 & 1%,
Tt a7 (301) 827-6220 / email davis@cber.fda.gov (2T Jerome Davis [IZfIWVEHOHEDH Z &,

Additional Copies gmar—

CDRH

Additional copies are available from the Internet at:
www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCMO085281.
htm.

You may also send an e-mail request to dsmica@fda.hhs.gov to receive an electronic copy of the

guidance or send a fax request to 301-847-8149 to receive a hard copy. Please use the document

number (938) to identify the guidance you are requesting.
Bl —E, A % —% v MEH : http://www.fda.gov/cdrh/comp/guidance/938.pdf % L < |Z CDRH
Facts-On-Demand #2HIZ CAFA[GE, FAX TO R¥ =2 2> NAFEHFLT H5E1%, EilfE 5 : 800-

899-0381/301-827-0111, # »F h— 2 E#EIZ T CDRH Facts-On-Demand system ~[\ &5, 1 &4
LY AT AIIAD, WOEFRTa 7 M T1LAEM L RFX 2 A MEELTH, R¥a A FEF938
wANNE R T, RICHSEF T2 7 MIEW, V7= X BT,

CBER

Additional copies are available from the Internet at: http://www.fda.gov/cber/guidelines.htm, by
writing to CBER, Office of Communication, Training, and Manufacturers' Assistance (HFM-40),
1401 Rockville Pike, Rockville, Maryland 20852-1448, or by telephone request at 1-800-835-5709
or 301-827-1800.

BNz e—iE, A % —% vikH : http://www.fda.gov/cber/guidelines.htm, i : CBER, Office of
Communication, Training, and Manufacturers' Assistance (HFM-40), 1401 Rockville Pike, Rockville, Maryland
20852-1448 & L < IX&EFEE 75 1-800-835-5709 / 301-827-1800 |Z T AT-FIHE,

B X

SECTION 1. PURPOSE HH 6
SECTION 2. SCOPE #iff 6
2.1. APPLICABILITY B HME oo ovoiiieeieiceee et 7
2.2, AUDIENCE =T £ o2 2 e 8
2.3. THE LEAST BURDENSOME APPROACH f/NEDAME R DT 70 —F . 9
2.4. REGULATORY REQUIREMENTS FOR SOFTWARE VALIDATION Y 7 k7 =7 /R 5 —
2T Y DBITEIR oot 9
2.4. QUALITY SYSTEM REGULATION VS PRE-MARKET SUBMISSIONS SB35 A HiHI
E TR H R oottt 12
SECTION 3. CONTEXT FOR SOFTWARE VALIDATION Y7 b =7 N)F— g 0 DHE
13
3.1. DEFINITIONS AND TERMINOLOGY % & BRI ER oo 13
3.1.1 Requirements and Specifications — ZIR & AR oo 14
3.1.2 Verification and Validation XU 7 47— a &N F—2 90 . 15
313 IQ/OQ/PQ oo 17
3.2. SOFTWARE DEVELOPMENT AS PART OF SYSTEM DESIGN ¥ A7 AT ¥ A > D i
ETRD YT R T T BHFE oo 18
3.3 Software is Different from Hardware ¥ 7 b =7 3/NN— R =7 L B 5 ... 18
3.4. BENEFITS OF SOFTWARE VALIDATION Y 7 b7 =7 XU F— g »OF|& ... 21
3.5 DESIGN REVIEW T A L L E o e 22

SECTION 4. PRINCIPLES OF SOFTWARE VALIDATION Y7 7 =7 NRNYF—3 a3 VO]

=[] 24
4.1. REQUIREMENTS TR ettt 24
4.2. DEFECT PREVENTION KADIEIEE ... 24
4.3. TIME AND EFFORT FERHT & 7 7T i 25
44. SOFTWARELIFECYCLE Y7 R U7 TA T A T IV e 25
4.5, PLANS BFHH ..ot s s renes 25
4.6. PROCEDURES T ..ot 25
4.7. SOFTWARE VALIDATION AFTER A CHANGE ZHEH%DOY 7 vy =7 N F—T 3 v

... 26

4.8. VALIDATION COVERAGE /NU T =32 S HFH oo 26
4.9. INDEPENDENCE OF REVIEW L E = DJHIT oo 27
4.10. FLEXIBILITY AND RESPONSIBILITY = ZZHRIE & BT 27
SECTION 5. ACTIVITIES AND TASKS {f&Eil % 27 29
5.1. SOFTWARE LIFE CYCLEACTIVITIES Y7 b =7 F4 7% A 7)VIEE] ... 29

5.2. TYPICAL TASKS SUPPORTING VALIDATION #ZE¥Ef)% X 7 %R — bR F— 3 >

5.2.1. Quality Planning S FTTE ..ooveiieeieieiceeie et 31

5.2.2. Requirements ZEIRTE ..o 33
5.2.3. DESIZN BE T cierererereieieieieieieseieieist ettt ettt ettt ettt ettt senes 36
5.2.4. Construction or Coding AHEZEE 721X T =T £ 27 e 40
5.2.5. Testing by the Software Developer Y 7 7 = 7BIREZIZL DT A D i 43
5.2.6. User Site Testing = —HIZE DT A B oo 55
5.2.7. Maintenance and Software Changes A7 A& VT N7 2T ER ... 58

SECTION 6. VALIDATION OF AUTOMATED PROCESS EQUIPMENT AND QUALITY
SYSTEM SOFTWARE E&{b 7 n v REBELNEVAT LAY 7 b =T ONRN)F— g

62
6.1. HOW MUCH VALIDATION EVIDENCE IS NEEDED? EODOFfEDNY F— g2 =

T U ADIWATIIN D oo 64
6.2. DEFINED USER REQUIREMENTS = —TFERIEZE oo 65
6.3. VALIDATION OF OFF-THE-SHELF SOFTWARE AND AUTOMATED EQUIPMENT 4

TP ez T VT =T EHBEEEDO AN T =23 v, 67

General Principles of Software Validation
VI IT N\ T—avO—HERE|

This document is intended to provide guidance. It represents the Agency’ s current thinking on this topic. It
does not create or confer any rights for or on any person and does not operate to bind Food and Drug

Administration (FDA) or the public. An alternative approach may be used if such approach satisfies the

requirements of the applicable statutes and regulations.

RKXEEITAFL L ATHD, ZOREIZBEWTORMERENF (FDA) HHOEREZETLOTH
Do WD NN DR ZEY 5255 O TRITIUE, FDA ORIk LR 21T+ 5
HLOTHRW, RET 7o —F RN RER SRS 22T chiul, RE7 7 e—F2HWTH &
v,

SECTION 1. PURPOSE HH)

This guidance outlines general validation principles that the Food and Drug Administration (FDA) considers to
be applicable to the validation of medical device software or the validation of software used to design, develop,
or manufacture medical devices. This final guidance document, Version 2.0, supersedes the draft document,

General Principles of Software Validation, Version 1.1, dated June 9, 1997.

KRIA X2, BRESRY 7 b =T O F—va v b LATEREEROREH, B%E. BRI
Hoond Y7 b7 O F—3 3 280 T Food and Drug Administration(FDA) 23] Td 5 & H)
Wrd 2 —Miy7e Y F—a CORRIZHAT 20 TH D, ZOHA X ADRFEIR Version 2.0 13
General Principles of Software Validation, Version 1.1, dated June 9, 1997.D 2% 2 Th 5,

SECTION 2. SCOPE #iH

This guidance describes how certain provisions of the medical device Quality System regulation apply to
software and the agency’ s current approach to evaluating a software validation system. For example, this
document lists elements that are acceptable to the FDA for the validation of software; however, it does not list all

of the activities and tasks that must, in all instances, be used to comply with the law.

RHA KA, EFEERAE AT LABANCESDIHEN, Y7 b7V 7 "Ny =T AN T
—2a VAT LEHMET AU RBOKFOT Fa—FIckt L, EokricEAENshEwAT 5,
ZIE, ALETIEY 7 b= T7ONYF—3 3 NZBWT FDA BNHRT HHEHEZLH L TUIWDH H O
D, EEESTFT D550, RTCOHEITBIT HIEFHCX 27 BEH I TV D DT TiEZRu,

The scope of this guidance is somewhat broader than the scope of validation in the strictest definition of that

term.

KA X AL, HFEO ETCHRERERZRON) T—va LD L ETIRNED E o7z,

Planning, verification, testing, traceability, configuration management, and many other aspects of good software

engineering discussed in this guidance are important activities that together help to support a final conclusion

that software is validated.

HE, XY T4y —vary, TANM, he—HvEUF 4, ar T4 — g VERRY, KUAX
VANTHERLGNTWDIRWY 7 Ny =27 O =7 U ZIZET 5 OMOAImL, £2THR—>ok
RHZET, Y7 hT2TONRYTFT—hEWI KA Z BT 2EHEREHTH 5,

This guidance recommends an integration of software life cycle management and risk management activities.

KA Z AT, V7 02T T4 7 A7 NVERE) X7 EHFEHORA Z@0 TV D,

Based on the intended use and the safety risk associated with the software to be developed, the software
developer should determine the specific approach, the combination of techniques to be used, and the level of
effort to be applied. =~ While this guidance does not recommend any specific life cycle model or any specific

technique or method, it does recommend that software validation and verification activities be conducted

throughout the entire software life cycle.

V7 M7 OBKSNDOABEFEBEEIND Y 7 by =2 TICHET 2RZEY A7 2SN T, YT b
VT HEEIIREDCT T u—F HHSNLEMOMEE, ELTHHDO LNV ZHET§XÐ

Do KHAX L ATIHEED T A 7 A ZIIVETAREDMEFR i, FEAHER L2 VN, Y7 |k
VT NN TF =g XY T 45—y a AFER, VT MU =T I T A I AR EE L TIThh
HRETHDLZ EEMM LI,

Where the software is developed by someone other than the device manufacturer (e.g., off-the-shelf software)
the software developer may not be directly responsible for compliance with FDA regulations.In that case, the
party with regulatory responsibility (i.e., the device manufacturer) needs to assess the adequacy of the off-the-
shelf software developer’ s activities and determine what additional efforts are needed to establish that the

software is validated for the device manufacturer’ s intended use.

WIS FE LA OFICL Y Y 7 by =T RS SE Bl AT Y-y T - YT RU
T). Y7 N =T BREEHHS, EHEFDA ORI H I 5L F TRV EARE LY, 0%
. BEICBIT 2 RB A A DB (B RBREEEE) SRELT L0, AT Y v=LT YT
b= 7 S OB OR LS E B, BRILEEEOBR LR TY 7 by =T AR F— b &
NTND 2 L ORI LER TR SN EWET 52 L Th b,

2.1. APPLICABILITY & /f#

This guidance applies to:

- Software used as a component, part, or accessory of a medical device;

- Software that is itself a medical device (e.g., blood establishment software);

- Software used in the production of a device (e.g., programmable logic controllers in manufacturing
equipment); and

Software used in implementation of the device manufacturer's quality system (e.g., software that records and

maintains the device history record).
KA 22 ZFL T OHEBIZHEIGT 5 ¢
o EIFBEDO AR =R M, N=Y XIT 7YV —LLTHWONDY 7 FT =T
o EREETHLY 7 by =T (Bl MY 7 F T =T)
o FEOHGEICHWLND YT My =T (i« BUERERN O PLC)
o WGELEREMME L AT LAOBITICHNEND Y 7 by =T (fl : s DOEEZRLE, A
TFUAT LY T b =T)

This document is based on generally recognized software validation principles and, therefore, can be applied to
any software. For FDA purposes, this guidance applies to any software related to a regulated medical device,
as defined by Section 201(h) of the Federal Food, Drug, and Cosmetic Act (the Act) and by current FDA

software and regulatory policy. This document does not specifically identify which software is or is not

regulated.

ARILEE R Y 7 R =T N T = a VFEEICHE S b OT, b5 YT b = TITNT
%, FDA ®FEIX & L TlE, the Federal Food, Drug, and Cosmetic Act (the Act)?® Section 201 (h) & H#T D
FDA software and regulatory policy TEFR N5, MElSEH SN L ERERICEAT LY 7 by =TI
MT 2, RICGEL, EOY 7 Mo =T7 nEBIOEM 2500 20, Bl O 25 720z BARRIZEE
ETDHHDTIER,

2.2. AUDIENCE F—F 4T A

This guidance provides useful information and recommendations to the following individuals:

* Persons subject to the medical device Quality System regulation

* Persons responsible for the design, development, or production of medical device software

* Persons responsible for the design, development, production, or procurement of automated tools used for the
design, development, or manufacture of medical devices or software tools used to implement the quality system
itself

* FDA Investigators

* FDA Compliance Officers

- FDA Scientific Reviewers

KRIA L RE, RORGE T LSO SRR 27T 5
o [EFRIEIRIE T AT MO Y H
o EWMERY T MU =T ORE, B, GO RTE
o [ERMERORG, PR EITEHEHT 2 A8y —LOEMLE, HLNIEREY AT LA
KA T A MIEHEND Y7 by o7 Y — L OkE, BA%, i, FHEOHMTH
o FDA DHEZEE
o FDA DAL T T4 7 AHYEKE
o FDA ORI P2 L E 2T

2.3. THE LEAST BURDENSOME APPROACH BINBOARTERDBT S u—F

We believe we should consider the least burdensome approach in all areas of medical device regulation. This
guidance reflects our careful review of the relevant scientific and legal requirements and what we believe is the
least burdensome way for you to comply with those requirements. However, if you believe that an alternative
approach would be less burdensome, please contact us so we can consider your point of view. You may send
your written comments to the contact person listed in the preface to this guidance or to the CDRH Ombudsman.
Comprehensive information on CDRH’ s Ombudsman, including ways to contact him, can be found on the
Internet at:

ttp://www.fda.gov/ cdrh/resolvingdisputes/ ombudsman.html.

RS D & 6D 57BN T, R/NMROART L 227 7 e —F ORSIIEH L THRFE2 T 5~
ERELEBEZD, 2&734’5’//? E. BE T SRR, EREDRZ L, ZAHESRIZHED &, b o
EHLARMDORNT T a—FThHA A EHRAIFMEL WD, b L, ZOMRBEOT Fa—FRnkn Aals
BT 5bDTHDEBbNIGEIE. BMAIZ—REWVWEES ZE TEDORMRERFIT 2, RITA L
ALY A RSN TV AHHNYE S L < 1L the CDRH Ombudsman [ZEHIZ L D = A RASATRE, EAGT
B¢72 £ CDRH Ombudsman (23 2 GH R E#RIZ. 2 —x v b
http://www.fda.gov/cdrh/resolvingdisputes/ombudsman.html.|Z CFIH AIEETH 5,

2.4. REGULATORY REQUIREMENTS FOR SOFTWARE VALIDATION Y7 U =7 RNYF—a v
DRRHIEK

The FDA’s analysis of 3140 medical device recalls conducted between 1992 and 1998 reveals that
242 of them (7.7%) are attributable to software failures. Of those software related recalls, 192 (or
79%) were caused by software defects that were introduced when changes were made to the
software after its initial production and distribution. Software validation and other related good
software engineering practices discussed in this guidance are a principal means of avoiding such
defects and resultant recalls.

3140 RO) 20— /VIZk9 5 FDA Orid, 1992 005 1998 FEORIICE S iz b DT, £
DR 24211 (1.7%) 13V 7 MU =T OBERRICERNT 260 THL, £OY 7 by =T HEO Y 22—
DB 1921 (79%) &, WIIORGE L RFERIC, V7 MU =TI LEEN LSk E T
Y7 Y =T ORI TH Tz, ATA L ATHRALTNDY 7 by =T N F—=varbxo
BAE LIRS 2 Y 7 b =T 2o =T U o BRI, 2o XD BRI ERERICEZ Y 272
Ua— & RRCEEES 5720 OBEELFETH D,

Software validation is a requirement of the Quality System regulation, which was published in the
Federal Register on October 7, 1996 and took effect on June 1, 1997. (See Title 21 Code of
Federal Regulations (CFR) Part 820, and 61 Federal Register (FR) 52602, respectively.)
Validation requirements apply to software used as components in medical devices, to software that

is itself a medical device, and to software used in production of the device or in implementation of

the device manufacturer's quality system.

VTR =2T R T =g AIE Y AT AHRAIOER T, 1996 4F 10 A2 the Federal Register T¥4T
A, 199746 H 1 HIZHZhE 72 o7, (Title 21 Code of Federal Regulations (CFR) Part 820, 61 Federal
Register (FR) 52602, &% ZMR) NUF— g VESRIIERESR O AR—3r o M LTHERESND V7
Fy=7, V7 U7 AENERER THL O, G EOWE T AT LAOE A EiiiEd
L IIHESRRLEEETE OB AT LADOA TV AV MUEREND Y 7 MU = TIZHEA S D,

Unless specifically exempted in a classification regulation, any medical device software product
developed after June 1, 1997, regardless of its device class, is subject to applicable design control
provisions. (See of 21 CFR §820.30.) This requirement includes the completion of current
development projects, all new development projects, and all changes made to existing medical
device software. Specific requirements for validation of device software are found in 21 CFR
§820.30(g). Other design controls, such as planning, input, verification, and reviews, are
required for medical device software. (See 21 CFR §820.30.) The corresponding documented
results from these activities can provide additional support for a conclusion that medical device

software is validated.

S RERLEI D O R ICBRAN SV WER D | 1997 426 H 1 H XL W RRICHBE SN aERER Y 7 by =7
L, BEERTEICRE 677, BN T ORRGHEEIEON G L 725 (21 CFR §820.30 &), Z DFR

BITORRBE T r Y =7 FOSER. HOPLHHHE T e s b BUTOERKG Y 7 by =TI
ﬂbﬁbhk%%%aa TNAAYT "2 T ONRY T —2 g AT DEEDOERIT 21 CFR §
820.30(ZIE BN TV D, ZOfEREHER GHEl, AS), XU 7 40—y ar, bE=) bERES
V7 =T TCHAEEIRD, (21 CFR §82030.2M) ZAOFEEICHTOM™EELZLF LI bDIT, &
R Y 7 N = T ISR T — N SN 2 L AT A MBER L 72 B,

Any software used to automate any part of the device production process or any part of the quality
system must be validated for its intended use, as required by 21 CFR §820.70(i). This
requirement applies to any software used to automate device design, testing, component

acceptance, manufacturing, labeling, packaging, distribution, complaint handling, or to automate

any other aspect of the quality system.

BarE 7o X b LULMEV AT 20 LWL BB L T& 7Y 7 h v = 7%, 21 CFR
§820.70(1). TER ENTWAH L H1Z, BRKTHHRBICBNTAYF— RS TWaiFUuIRben, 2
OFRIT, BEMLEERORE. 7 A, 2R —x v M AN, #iE TRV T RNy r—Ur
7, WRGE, EERHG, ERIERE VAT ACET2H 5P MEIZONT, TRTOY 7 My =TI
Manas,

In addition, computer systems used to create, modify, and maintain electronic records and to

manage electronic signatures are also subject to the validation requirements. (See 21 CFR

§11.10(a).) Such computer systems must be validated to ensure accuracy, reliability, consistent

10

intended performance, and the ability to discern invalid or altered records.

o, BEFREOMERK, BIE, REFLEFELAOEHRICHV LN Ea—F v AT NI, N T
—Ta YEROXG 7% (21 CFR §11.10(2).2H), T barBa—& A7 AME, B, E8
P, —H L72EMT HMREORA, 2 L TS A SNt a il 288 2 RaET 5 LT
T— FINTWRIFIIER B0,

Software for the above applications may be developed in-house or under contract. However,
software is frequently purchased off-the-shelf for a particular intended use. ~All production and/or
quality system software, even if purchased off-the-shelf, should have documented requirements

that fully define its intended use, and information against which testing results and other evidence

can be compared, to show that the software is validated for its intended use.

FROT TV r—aroy 7 byl ARG LAOIRNICESEE T L2 8 TE S, L
L., Y7 b =T IBEOHERBHOT, &7 « ¥« U= L7 2BASINDEEENE, 285N E v
ATEY 7 N7, A7 T ELTHASINTY, ZOEHHREER LIZER L ik
TELTAMEREZOMEET U AZONTOERELEN LT, 20OV 7 MU =7 BEXT 2 ik
R LN T =R ENTWDHZEERTRETH D,

The use of off-the-shelf software in automated medical devices and in automated manufacturing
and quality system operations is increasing. Off-the-shelf software may have many capabilities,
only a few of which are needed by the device manufacturer. Device manufacturers are
responsible for the adequacy of the software used in their devices, and used to produce devices.
When device manufacturers purchase "off-the-shelf" software, they must ensure that it will
perform as intended in their chosen application. For off-the-shelf software used in manufacturing
or in the quality system, additional guidance is included in Section 6.3 of this document. For
device software, additional useful information may be found in FDA’s Guidance for Industry,
FDA Reviewers, and Compliance on Off-The-Shelf Software Use in Medical Devices.

ABLShcEREMG L. BEIC L 280E, mMET AT JAERICBN T - P - =T - VT
N =T ORBITHML TS, &7 - % - vz b7« V7 Ny = TIESRRHBREE FF LA DbE 278,
ZORO—EHOMRETET PR IIEREZ IT L > TRE L 0D, HERIEER T, a2 ET D88 #
wONMTHEAEND Y 7 by =7 ORLEICHELZA S, BelERT3A7 -V - vy - V7
M7 ZBALTES, SIRL27T 7Y r—2a U CRRILEEREZRBET 5 Z & 2RI LT
mHpy, JiE b LATME VAT AICHWLNL AT < ¥ - =T - VT hy =TI LT,
AL Section 6.3 IAHE T A 4 ARV IAEN TN D, T8 AV 7 b7 =T IZB L TOMF 71
1%, FDA ® Guidance for Industry, FDA Reviewers, and Compliance on Off-The-Shelf Software Use in Medical
Devices. |2 fgil LTV 5,

11

2.4. QUALITY SYSTEM REGULATION VS PRE-MARKET SUBMISSIONS B A7 A
FLAN & THRATH 5

This document addresses Quality System regulation issues that involve the implementation of
software validation. It provides guidance for the management and control of the software
validation process. The management and control of the software validation process should not be

confused with any other validation requirements, such as process validation for an automated

manufacturing process.

ARIGETIE, Y7 =T RNV TF—va yOEEEL, WEY AT LABANCEET 2 E G Y #%
Vo ZIZTIE, VY7 b7 R T =g 7uvAZEH Loy ha— LT 572000 A X Axft
g5, VI AN F—varrawA0FEE oy be— ik, flxE, BEERE T o 2
BTN TF—varrritRen oo F— g VERRERE LTI 6720,

Device manufacturers may use the same procedures and records for compliance with quality
system and design control requirements, as well as for pre-market submissions to FDA. This
document does not cover any specific safety or efficacy issues related to software validation.
Design issues and documentation requirements for pre-market submissions of regulated software
are not addressed by this document. Specific issues related to safety and efficacy, and the
documentation required in pre-market submissions, should be addressed to the Office of Device
Evaluation (ODE), Center for Devices and Radiological Health (CDRH) or to the Office of Blood

Research and Review, Center for Biologics Evaluation and Research (CBER). See the references

in Appendix A for applicable FDA guidance documents for pre-market submissions.

PR BUEZER X, FDA ~OHHRATIAT 2 HEh & Ak, SE T AT A L RGHEBLESRICHENL T 5 2%, (A
CFIREFTERAEHT 220 H D, RCEIX, V7 b =T7 AN F—ra VBEET D RED LR
P, HAMEICESDLBBEEZIRY S O TIEARW, HilillZ 505V 7 by =7 THilRATO B FEIC L
L7 HREHIEAT 2B & CE LD BERIT, ACFEICRMS LTV, ZatE, AMEICEET 5 2
L F LU TCHIERATO EEIC TR & 70 2 3CGEITRHE L 72 fE1E, the Office of Device Evaluation (ODE),
Center for Devices and Radiological Health (CDRH) % L < (& the Office of Blood Research and Review, Center
for Biologics Evaluation and Research (CBER)IZFLH SN D T7EA 9, THRATHEFED 7O OHELES 5 FDA 47
AL VARF 2 A MBI LTI, Appendix A 5D = &,

12

SECTION 3. CONTEXT FOR SOFTWARE VALIDATION Y7ty =7Y

F—a DR

Many people have asked for specific guidance on what FDA expects them to do to ensure
compliance with the Quality System regulation with regard to software validation. Information
on software validation presented in this document is not new. Validation of software, using the
principles and tasks listed in Sections 4 and 5, has been conducted in many segments of the

software industry for well over 20 years.

ZLOANBINETICEHALTCELEDOIL, V7 b =T7 AN TF—va T L0E AT 28010
BWAFIZOUWT, FDA Ml & 3RO TV D M Z R I BAR e A o A Th D, RCEN TS Y 7 b
T TN F— g AT AERITIR L TH LS DO TIE ARV, 43 L 5 EICHELFAIE # 27
Bl 7 ho =T ORI T —va it FM20FU R Y 7 b =T EROEL L O E
WTEbDOTH S,

Due to the great variety of medical devices, processes, and manufacturing facilities, it is not
possible to state in one document all of the specific validation elements that are applicable.
However, a general application of several broad concepts can be used successfully as guidance for
software validation. These broad concepts provide an acceptable framework for building a

comprehensive approach to software validation. Additional specific information is available

from many of the references listed in Appendix A.

AR, e A, SRR EOIER RS LY . @YY T =23 VEROETE DD
REa A2 FRIZBWTGRRD Z EIETE 2, LLAaRD, —ENR&E SO KREN a7 b
DAL, Y7 oz T NI T =2 aDOHA L AL LTERIEHAT22ENTES, ZnHKE
Nipare 7 NI, Y7 R TR T = a O T S a —F BHEET 5% 0 AR iER T L
— LU —7 EMT 5, BINE#IE Appendix A IZFIFE L 722 < OB FSCHR2 LRI ATRETH 5.,

3.1. DEFINITIONS AND TERMINOLOGY &% L HEFHEE

Unless defined in the Quality System regulation, or otherwise specified below, all other terms used

in this guidance are as defined in the current edition of the FDA Glossary of Computerized System

and Software Development Terminology.

BV AT LBAITERINRWVIERY . b LIFHOMEIZ T TRICHRE SR WIRD | BRI A X2
W S5 2 OHFED 4 TIL, the FDA Glossary of Computerized System and Software Development
Terminology. D EHRDOH TEFR L TV D,

The medical device Quality System regulation (21 CFR 820.3(k)) defines "establish" to mean
"define, document, and implement." Where it appears in this guidance, the words "establish" and

“established” should be interpreted to have this same meaning.

PR E o A7 A HHI21 CFR 820.3(k)) Ti, "establish"% “EF 4 5. XFELTDH, A7V A

13

VTR LEFE ST WD, KHA KL ANT, "establish", "established"& V9 SHIX, T & [FEE
DEWEZHETHHEDE UTHIRT 52 L,

Some definitions found in the medical device Quality System regulation can be confusing when

compared to commonly used terminology in the software industry. Examples are requirements,

specification, verification, and validation.

M E AT AHANCER RSN TWARONDOHEDERIL. V7 b7 =T ¥R TRIICE
HAENLHMAHGEE IR T D ERILLTLE Y, Hlazbifo L, Bk, tHEk XV 74— a0 AN
VF— g8 Thb,

3.1.1 Requirements and Specifications ~ Z3R & L4k

While the Quality System regulation states that design input requirements must be documented, and that
specified requirements must be verified, the regulation does not further clarify the distinction between the terms
“requirement” and “specification.” A requirement can be any need or expectation for a system or for its
software. Requirements reflect the stated or implied needs of the customer, and may be market-based,
contractual, or statutory, as well as an organization's internal requirements. There can be many different kinds
of requirements (e.g., design, functional, implementation, interface, performance, or physical requirements).
Software requirements are typically derived from the system requirements for those aspects of system
functionality that have been allocated to software. Software requirements are typically stated in functional
terms and are defined, refined, and updated as a development project progresses. Success in accurately and
completely documenting software requirements is a crucial factor in successful validation of the resulting

software.

M AT ABHNE, BRE OO OFERIFICE LI N2 TR B, & L TEOREE DO TERITHR
AESRITIUTZR B RN EBRTND—FH T, “BR” & “UAR” OBFEWE LT EHEISE TR
W, BREIE, VATLARY T MU =TT HAHBWH=— X, HIFHETH D, ERIFIIREINTZH
DVEIRBROBED =— X&KL, THENL DO, L Db D, EXETT L7200 DT
bolo b | MNMOBERTHH V15D, ZFLERZRERE (B : &EF, #re, 17 AT —v g
VoAVE—=T 2= A RTp—v A WHEER) BFEET D, VT MU= TERE, R
TR TICED S TOENTY AT LAOKREE W o 2RI 5 2 AT AERM B AR ESND, VT
R = T ESRIE RIS RERY e S E L CREEI S L, BT e Y 2 7 RAERIC Lo TERE. &K
B, BHShb, Y7 by T EREEROOERICCENMTHZ L, BENIZY 7 bT =T O
T a v ERNEEDL I EOBERRERERD,

A specification is defined as “a document that states requirements.” (See 21 CFR § 820.3(y).) It may refer to
or include drawings, patterns, or other relevant documents and usually indicates the means and the criteria
whereby conformity with the requirement can be checked. There are many different kinds of written

specifications, e.g., system requirements specification, software requirements specification, software design

14

specification, software test specification, software integration specification, etc. ~All of these documents

establish “specified requirements” and are design outputs for which various forms of verification are necessary.

AR VD S, “EREZR L SCE LEHREIND (21 CFR §820.3(y).2 M), ZiULK/ ¥
— . FOMBEEH D LEEZBRTLINER, VTS, TRICE > TERNH-ZENDZ &%
MR TEDLINELEFMERLTND, ZREEZERRARE —FE LT AT AMEEE, V7 U =T 3K
HERE, Y7 b= TERGHIEE, V7 N =TT A MEEE, V7 MU o THRAMERER RS D,
INHTA_NTORF =2 A b, “BREHORE 2B IRV, &IORR L LT, ka7l 7 4
F—=a DD T F—EPLE LIRS,

3.1.2 Verification and Validation XV 7 4/ —3 g R F— g

The Quality System regulation is harmonized with ISO 8402:1994, which treats “verification” and
“validation” as separate and distinct terms. On the other hand, many software engineering
journal articles and textbooks use the terms "verification" and "validation" interchangeably, or in

some cases refer to software "verification, validation, and testing (VV&T)" as if it is a single

concept, with no distinction among the three terms.

A AT LBAINE, 1SO 8402:1994 DFFIR & [Afk, "~ 74— g LN F—g "%
BaDORBZLHAFEE L TH->TND, —FTiE, 2DV 7 ozT V=71 v 7 HREOTFH
ﬂ%f<JNU74#—V5/'UA)T—VHV%wﬁﬁﬁ%ﬁﬁm%wfmtb\m<oﬁ@7
— AT, Y7 hUzTO"RY T 4= a N F—va b T ARMNVVED)" 72 ED X ST, Ok
SOPDarkEFhELTEEL, KIFTFELRZWVWELTWDLZ EHH D,

Software verification provides objective evidence that the design outputs of a particular phase of
the software development life cycle meet all of the specified requirements for that phase.

Software verification looks for consistency, completeness, and correctness of the software and its
supporting documentation, as it is being developed, and provides support for a subsequent
conclusion that software is validated. Software testing is one of many verification activities
intended to confirm that software development output meets its input requirements. Other
verification activities include various static and dynamic analyses, code and document inspections,

walkthroughs, and other techniques.

V7R TORY T 4 r—vavid, V7 NU=TREIA THA I NVFDH D7 = — RO GHE
BB, 207 2 —RTBITHIRESNTEREZMIT Z & 2R TRl a3 5, Y7 vz 70xY
74#~Vayﬁ\V7F7I7k%®%@i§®*§@\%éﬁ\%i@E%ﬁ%@ﬁb\%®%%
DBZRDONERRIZ, Y7 o =2T BN TF—hEnfcdnwd Z L 2RIk MAT 5 2 &ic&kro, Y
TR 2T DT ANME, Z<OXRV T4 =2 a MNEEDIBHLO—DTHY, V7 MU= T ORISR
DERZMIET ZEEHERLLI ETDHHDOTHDL, TOMONY 7 ¢ r— 3 ANEEIIE, BRx o
kB L OEH R, 23— e FFXa A FOBE, UV —27 AN— ZOMDT 7=y 7 R3d D,

Software validation is a part of the design validation for a finished device, but is not separately

15

defined in the Quality System regulation. For purposes of this guidance, FDA considers software
validation to be “confirmation by examination and provision of objective evidence that software
specifications conform to user needs and intended uses, and that the particular requirements
implemented through software can be consistently fulfilled.” In practice, software validation
activities may occur both during, as well as at the end of the software development life cycle to
ensure that all requirements have been fulfilled. Since software is usually part of a larger
hardware system, the validation of software typically includes evidence that all software
requirements have been implemented correctly and completely and are traceable to system
requirements. A conclusion that software is validated is highly dependent upon comprehensive
software testing, inspections, analyses, and other verification tasks performed at each stage of the
software development life cycle. Testing of device software functionality in a simulated use

environment, and user site testing are typically included as components of an overall design

validation program for a software automated device.

7 02T RYTF—Taid, BRLIEEERORFAN T =2 a v O—THIHIN, WEY AT A
HAlOFTIERIEICERZ SN TV AR, KA X ZAHME LT, FDARY 7 b7 =T R F =g
., V7 M =2T OHRB A= ARERT BRI —HRLTEY ., HFEDERNEY 7 by =T
W—BLTHAESNLTVWAZ L2 RE L FBNRAMUC L VERTHZL” EEX TS, ERRIC
7 hy 2T R T =g IRENE, BEREFENEL SN EERIET S0, VT MU = TR
TATHA I NVORRAFEREE THOMGITEZY 55, @F Y7 MU= TIIRERN—R Y =T AT

EDO—IEDT, VI NI 2T ONYF— g 0%, —RICEY 7 Y = 7T ERDIEHNOERITA
VTV AVRER, VAT AERICH LT R L= T THLEI R DL EA TS, YT Y
2T RN F— R EnZ W fEimit, AN Y 7 by 2T T A N, il O, Fofy 7 b

TERT A 75 A 7 VOB f5m974#—v5/@&x& IRELKGFT D, TXAAY T

F7 =2 7ICx LT, FIAREAZ Y I 21— M LEEHEET A b2 —Y VA NMIBITDT A M2 EET 5
ZEiE, RICEEMEEEE Y 7 b = T OAEDBIRREI N T a a7 A00EDE LT
aEhd,

Software verification and validation are difficult because a developer cannot test forever, and it is
hard to know how much evidence is enough. In large measure, software validation is a matter of
developing a “level of confidence” that the device meets all requirements and user expectations for
the software automated functions and features of the device. Measures such as defects found in
specifications documents, estimates of defects remaining, testing coverage, and other techniques
are all used to develop an acceptable level of confidence before shipping the product. The level
of confidence, and therefore the level of software validation, verification, and testing effort
needed, will vary depending upon the safety risk (hazard) posed by the automated functions of the
device. Additional guidance regarding safety risk management for software may be found in
Section 4 of FDA’s Guidance for the Content of Pre-market Submissions for Software Contained
in Medical Devices, and in the international standards ISO/IEC 14971-1 and IEC 60601-1-4

16

referenced in Appendix A.

VIR =T ORY T4 r—varbnNF—va IRET, 2oBMIT, BEEENKAICT X
FT&ERNZ L L, FOREZ S > TGGELA 3 THLIEZHW T 52 N LWVNLTH D, KER
RETRIZEG, Y7 by =T7 ") F—=a i, &, Y7 b =7 ABLRRE & s O FvEIC T
LT, RERFHE 2 —FOMFHEL -T2 L THD “FHMEO L~V OBRIEXOMETH D,
HARE TR O o T2 KM, BIEHEFET HRMO TR, 7 A M, ZLTEOMOT 7=y 7 L\
S e BT O AN Z T AN OGN D EHEOEL A LN T 2720, T XTHWbR D, B
POV DFEV YT U2 T RN TF—=vay N Ty r—vay, BEIZRDLTA NGO
M, WEOHBERRE DL b b SN ZR®Y A7 (NAF—F) XV BRI THAH, YT b
=T DLV AT ERIZEAT A A X A%, FDA Guidance for the Content of Pre-market Submissions
for Software Contained in Medical Devices @ Section 4, Appendix A (Z & % Z:FRSCRHK, [EIBRFEYE ISO/IEC
14971-1 and IEC 60601-1-4 TiRX 53TV 5,

3.1.3 1Q/0Q/PQ

For many years, both FDA and regulated industry have attempted to understand and define
software validation within the context of process validation terminology. For example, industry
documents and other FDA validation guidance sometimes describe user site software validation in
terms of installation qualification (IQ), operational qualification (OQ) and performance
qualification (PQ). Definitions of these terms and additional information regarding IQ/OQ/PQ
may be found in FDA’s Guideline on General Principles of Process Validation, dated May 11,
1987, and in FDA’s Glossary of Computerized System and Software Development Terminology,
dated August 1995.

FWNZH2Y | FDA EBIRIOEM 25T 2% 5%, Tu 2R F—v g VCBT 2HMARET, Y
7 hU TN T a COBERERERMT RS T, FIR, ERCEREOMFDA N F— =
YA HF AL, installation qualification (IQ : BXE WK MERFE), operational qualification (OQ : F&EE F4
RFE) and performance qualification (PQ : PEREMEMSMERRGE) DBLE N D 2 —FIZL DY 7 b T =T Y F—
a v EMENERL TS, ZRHODOHEDOER L 1Q. 0Q, PQ IZBHT L IBIAIIF#HIL, FDA O
1987 %% 5 H 11 HfFJ Guideline on General Principles of Process Validation, 1995 4= 8 H 17 Glossary of

Computerized System and Software Development Terminology Tik-<T\ %,

While IQ/OQ/PQ terminology has served its purpose well and is one of many legitimate ways to
organize software validation tasks at the user site, this terminology may not be well understood
among many software professionals, and it is not used elsewhere in this document. However,

both FDA personnel and device manufacturers need to be aware of these differences in

terminology as they ask for and provide information regarding software validation.

IQ. 0Q. PQ OEMHFEIZZDHMIZHmI, 2—VFRTOY 7 =T N TF—va XA T %
RRDT D, HHLEENRFEO—STIEIH I, ZOHMHGEILIZOY 7 F U= THMAZOMT
TE<SHMBNR I N T RWEBENNHY , KXETHHIOEAT ClIh-> TV, L L7225, FDA

17

WB LB ILEEFIL, Y7 b 2T RN T = a VT A ERE RS, BT HIcH L 2 L
5, INOMHEDENEZHERET DI LRNELRD,

3.2. SOFTWARE DEVELOPMENT AS PART OF SYSTEM DESIGN VAT AT DL D
V7 =T EFE

The decision to implement system functionality using software is one that is typically made during
system design. Software requirements are typically derived from the overall system requirements
and design for those aspects in the system that are to be implemented using software. There are
user needs and intended uses for a finished device, but users typically do not specify whether those
requirements are to be met by hardware, software, or some combination of both. Therefore,
software validation must be considered within the context of the overall design validation for the

system.

V7 N 2T H WY AT AEREOEADOREIX, B AT ARFHFIITOLA DO THD, VY
7 b = T ESRIT RS AR Y AT AER E D AR RAEND Y 7 MU =T 2T L AT
LB WTEZ OERE DRGNP OO D, TRk LTI 52— 0 =— X0 EX T 5 Hi&iE
HOHNR, =L, ZNHOHERNINN—Ry =7 Y7 hv T b LXMW EHEAGDE
THONERICEIMEIMERHTE LR, LER->T, Y7 b7 RN TF—vaif, YATAD
ARG AN T =2 a VORNKETEE SN2 ITIUTR L0,

A documented requirements specification represents the user's needs and intended uses from
which the product is developed. A primary goal of software validation is to then demonstrate
that all completed software products comply with all documented software and system
requirements. The correctness and completeness of both the system requirements and the
software requirements should be addressed as part of the design validation process for the device.
Software validation includes confirmation of conformance to all software specifications and
confirmation that all software requirements are traceable to the system specifications.

Confirmation is an important part of the overall design validation to ensure that all aspects of the

medical device conform to user needs and intended uses.

FORAARE IR AR SN HMREO 2 —F = —AREK T HHBEER L TWD, Y7 hy=T Y
T—=rvalryOFELLI—/IIGTER LY 7 Y =T RGN CERENTZY T h U =T LU AT AER
EESFLTCWAH I EZFET 52 THD, VAT AERE Y7 b o= 7 ERIZE T 2 B & 52tk
I, RO NY T —rv a7t 20— LTHEITRETHD, Y7 b7 RN F— g
Tk, &Y 7 MU= THREOEAENELE, 2V 7 MU= T ERNB VAT LAOMEL FL—ANRTED
ZLOMERIF(ELEEND, HRBMEEIL. BERIRREANY T =y a COEEREER A, ERES
Na—P=—X B LEHBICEAT LV LWL AEARIET H5H D Th b,

3.3 Software is Different from Hardware Y7 b U =T 3N—Ro =27 LB 5

While software shares many of the same engineering tasks as hardware, it has some very important

18

differences. For example:

V7 M =2TIEI A= R =T LRI, <D V=T VIR RA EESSTIINE S, EFICE
BIRFER P FET 2. BT -

- The vast majority of software problems are traceable to errors made during the design and
development process. While the quality of a hardware product is highly dependent on design,
development and manufacture, the quality of a software product is dependent primarily on design
and development with a minimum concern for software manufacture. Software manufacturing
consists of reproduction that can be easily verified. It is not difficult to manufacture thousands of

program copies that function exactly the same as the original; the difficulty comes in getting the

original program to meet all specifications.

o VI MY =TIZEODLLMEDKE L, Kit, AR T v ADRIZA LT —% FL—X
ARECH D, N— Ny =7 R-EOMEIX, &eF AR, WEICRKRESKFELTHDL, YT B
VT REOMEIX, Y7 MU 2T ORGEICE L TEIZERE D Z L, EITREE RIS
KELTWD, Y7 by =7 ORIEIIARS ICHEECE 2HEICEID2bDTHL, AV VT L
U LD ITHEET D RZH DT 0 7T Aa bt —0REITHL < v, BLVLWOIX, BEEREIC
RESIFVTFNT T I L e ANTFTHIETHS,

-One of the most significant features of software is branching, i.e., the ability to execute
alternative series of commands, based on differing inputs. This feature is a major contributing
factor for another characteristic of software — its complexity. Even short programs can be very
complex and difficult to fully understand.

o IROLHEERY T MU =T OFEO—2IE, FMDIETHL, 2FD ., BRDHANTL T, 7l
OO a~y REEITTIRNITHD, ZOFMIZY 7 by =T OMOFE I bbb T D
LOEBEMCTAERTH D, BT T A TEZBEMICRY | BRICEBT 52 LN
HRGEND D,

- Typically, testing alone cannot fully verify that software is complete and correct. In addition to
testing, other verification techniques and a structured and documented development process should

be combined to ensure a comprehensive validation approach.

o HH., TANZTTIZ, V7 N 2TRRBETEWMTHAIZ LETXTRIECEX 2V, T A B
M2 T, DRY 7 4 r—a T =y 7 0ELE O EAL SN B T v X3 A
EbENT, AN F— a7 a—F 2R T R Th 5.

- Unlike hardware, software is not a physical entity and does not wear out. In fact, software may
improve with age, as latent defects are discovered and removed. However, as software is
constantly updated and changed, such improvements are sometimes countered by new defects
introduced into the software during the change.

19

o N—RU=T LR VT MY TIIWEIEER TR LRV, FEERIC, BER K
NFERENEY RN TN DT, NIy 7 by =7 IddEShD7EA9, Lnl, V7
N =TT v T S, FRERAERINDLZOT, BERHIY 7 bU = TICHiT 7
KRR HTZHENDZLITRY, AEPWIREGZ 256085,

- Unlike some hardware failures, software failures occur without advanced warning. The
software’s branching that allows it to follow differing paths during execution, may hide some

latent defects until long after a software product has been introduced into the marketplace.

o N—RUTOKRMERRY, V7 Uo7 ORMITEROBEL R LICRET D, Y7 hUx
TR T, FATRFIC AR D N ANGFELTLE D LW O KA, V7 bo =7k
MNHBICH TR VRN SOETEBATLEY 2 B3 5,

- Another related characteristic of software is the speed and ease with which it can be changed.
This factor can cause both software and non-software professionals to believe that software
problems can be corrected easily. Combined with a lack of understanding of software, it can lead
managers to believe that tightly controlled engineering is not needed as much for software as it is
for hardware. In fact, the opposite is true. Because of its complexity, the development process
for software should be even more tightly controlled than for hardware, in order to prevent

problems that cannot be easily detected later in the development process.

o VI7 MNUT DEOMBEIET DFEIL, TOEEINDHLAEY—REEGHETHDL, ZDOERK
iE. Y7 h Y =T OEMERLEHEMFIC, VT by =T ORMBIIASITEIETE S LELEYE
TLESZEIIRD, Y7 MU =T OHARIIMA, BilL<arho—nL L7z Y=T1
YUE, N R TIZERINDIEFEEY 7 MU = TIIERETIERWE, w3 — T v [T
SETLEI LD DD, ERELHTHL, BHEENOZE, Y7 NV =TORE o &R
X, RS0 AUBTIEASICHERTERVEBEEZS S, "—Fru=7 X0 bl =
Yha— L ENBERETHD,

* Seemingly insignificant changes in software code can create unexpected and very significant
problems elsewhere in the software program. The software development process should be
sufficiently well planned, controlled, and documented to detect and correct unexpected results

from software changes.

e V7 MU xT a—RO—REBETHRWVWEEDNIERL, Y7 N7 70 s 7508)
T, PTHILAWE CHERRMEZ L-5TZ IR0 5, Y7 by =THRE ok 23,
BRI, B, CELEN, Y7 MY T OEFICLDTH Lo R ERRAL, &
ETE5 5D TRITIIXR B0,

- Given the high demand for software professionals and the highly mobile workforce, the software

personnel who make maintenance changes to software may not have been involved in the original

20

software development. Therefore, accurate and thorough documentation is essential.
o Y7 MU =T OHEMEIIHTLEmNTERL, HEREREROREICEY, Y7 hU =T OE
WEZTFEOV 7 Ny =T EAIX, VT AOY 7 My =TI TR ofeh
MR, T, EETREERFX a2 AT —va VPNEETH D,

* Historically, software components have not been as frequently standardized and interchangeable
as hardware components. However, medical device software developers are beginning to use
component-based development tools and techniques. Object-oriented methodologies and the use
of off-the-shelf software components hold promise for faster and less expensive software
development. However, component-based approaches require very careful attention during

integration. Prior to integration, time is needed to fully define and develop reusable software

code and to fully understand the behavior of off-the-shelf components.

o Wk, VI RU=TDOAVK=RY MIN=RY =T DR —F hDO XS, HEIEE
fbah s Z &3 ZHRARRZR LD TH RN o7, LinL, BIRT A 2V 7 by =7 B%
Hix, 2R —F bR=ZDRARY — v EHA A LD T 5, A7V =7 MamOT7
Eamet 7 vz 7 - V7 by =7 aryR—3xr bOFERICLY, LR, X0Zh
Y7 b= TRENAREICR T, LPLBRRL, IV AR—=F =207 7 u—FiF,
AT T L=y a BT, EFICHEREENLETHD, 77 L— a3 VORI,
HHAAERY 7 by =27 2= ROFXTOEREHFE, TLTAH7 - ¥ - P27 arfl—
22 OEHER T RTEMET 5720 DR H A LB D,

For these and other reasons, software engineering needs an even greater level of managerial

scrutiny and control than does hardware engineering.
ERROBREZOMBRICEY, Y7 2T V=T Y TE N—FU=THUED, FEEICK
LIMEZRE L, BHRICEHVKEEZRDOND,

3.4. BENEFITS OF SOFTWARE VALIDATION Y7 h =7 RYF—3 3 VOFE

Software validation is a critical tool used to assure the quality of device software and software
automated operations. Software validation can increase the usability and reliability of the device,
resulting in decreased failure rates, fewer recalls and corrective actions, less risk to patients and
users, and reduced liability to device manufacturers. Software validation can also reduce long
term costs by making it easier and less costly to reliably modify software and revalidate software
changes. Software maintenance can represent a very large percentage of the total cost of
software over its entire life cycle. An established comprehensive software validation process helps
to reduce the long-term cost of software by reducing the cost of validation for each subsequent
release of the software.
VY7 =T N TF=valid, TAARY T U= TRY T MY =TI K D HEMEED ME & PR
THERERY—NVThD, Y7 72T AN T =g 0%, B0 HECEEEZ R EEE5 2 &R

21

AMREICZR D . FER L L CHEROME T, [& 2 EHTE 0K, BE a2 —FIoxd 2 L0 En U =
R R DO BEOBREE b0, £V 7 =T AR TF—a ik, V7 b= T OELE
75:6%;@ L7e, Y7 =27 OEREHENY T — M52 LI @A, aANOPNLR
WIBIZT 52 LT, BRMICOE2 a3 X FOARG AL D, YT MU =T AT TR, YT Y
2T DETATHATNVITPNAETXTOIARMNIR LT, KERpR— 7= HEDTWD, S
LIZBdEH Y 7 b =7 RN F—varatv Ak, Y7 b7 T7OREIY U —RAZEH N F—
arvaARRERLTIENTE, VI MU TORMICOES A NEHIET S ENTE S,

3.5 DESIGN REVIEW FYAL L L=

Design reviews are documented, comprehensive, and systematic examinations of a design to
evaluate the adequacy of the design requirements, to evaluate the capability of the design to meet
these requirements, and to identify problems. While there may be many informal technical
reviews that occur within the development team during a software project, a formal design review
is more structured and includes participation from others outside the development team. Formal
design reviews may reference or include results from other formal and informal reviews. Design
reviews may be conducted separately for the software, after the software is integrated with the
hardware into the system, or both. Design reviews should include examination of development
plans, requirements specifications, design specifications, testing plans and procedures, all other

documents and activities associated with the project, verification results from each stage of the

defined life cycle, and validation results for the overall device.

THA VB2, I, BLOT . BRURTETH Y | REFERO LS, TOHE
KRaml- TG OFMMEEZMI L, FEZRET 260 THL, Y7 hy=T77uv=r FORETF—

2k, ZL OFARW T 7 =NV E 2B ET H AR S 203, AT A LB ald X
D —EfEL SN DT, BART —LUNOSMELZEZLLDOTHD, 7HA L E2 XY 7 hy =
THRVAT LN TNA— R =T EMELIEEY 7 M =TI L, HLHWNNIY 7 =T en— U=
Tz L, lxifThbivd, TYA L aid, BT T v OmEt, E*ﬁ%% REtteRE, 7 A b
FHEEE FIEE, 7o/ MCBEETLIHH WL X a X M EFEE), ERINLTA THA 710
BAT—=VICBIT LN 7 4 r—3a U, BIRRY RS @AJT—ya/F%%WD AT
SN

Design review is a primary tool for managing and evaluating development projects. For
example, formal design reviews allow management to confirm that all goals defined in the
software validation plan have been achieved. The Quality System regulation requires that at least
one formal design review be conducted during the device design process. However, it is
recommended that multiple design reviews be conducted (e.g., at the end of each software life
cycle activity, in preparation for proceeding to the next activity). Formal design review is

especially important at or near the end of the requirements activity, before major resources have

been committed to specific design solutions. Problems found at this point can be resolved more

22

easily, save time and money, and reduce the likelihood of missing a critical issue.

THA e aid BT =7 FOFH, FHliz L TW BOEERY =L Tho, HIZIE, &
ATFFA L2k, VI by =T AN T =g VREIEICERSNDETOHMBSERS I L
R T DEEN AR L 2D, WE VAT AHANL, RKIKTH —2DOAXRT VA v L B 2 DR
TR ARIATOND Z L EZRDTWD, LnL, BHEOTFA L2275 2 2HRT 5 (]
I T MU =T TATYA 7 IAEBORKEDE ., IROTEEZG] & e < ERFEIE) . EERY Y — X3k
TEDRFHIBET DIERIEICH THDON L URNS, AT VA L B2 [TEREB O AR mERE, & L<
X2 DORIGE CRICEZE CTH D, ZORRTHRAINZMBIT LV ESICHESh, FFE L& 22 b &2 iKY
L., BRARMEZAELTLE D WAL TN TE D,

Answers to some key questions should be documented during formal design reviews. These
include:

F—RA VMR DEMOEEIE, AT FA L2 OICCE LT 52, o, UTFE2ED5
N

-Have the appropriate tasks and expected results, outputs, or products been established for each
software life cycle activity?

o KV T RN =T TA THA VRN L Z A7 L PRl SRER. 1. DV
BRER ST ?

* Do the tasks and expected results, outputs, or products of each software life cycle activity:
v Comply with the requirements of other software life cycle activities in terms of correctness,
completeness, consistency, and accuracy?
v Satisfy the standards, practices, and conventions of that activity?
v Establish a proper basis for initiating tasks for the next software life cycle activity?
o XY T NU=T TATHA I NEBOZ A7 & TFRISVIRER, B, & LATEREIT -
v IEREVE, seett. —HME MEMEICREWT, 2Oy T b =T T A T A 7 REOER
EESFLTNDN?
v OHRIRB)OERE, R, LA &2l LTV
V RO T U =T TATIATIAEBOOM S 2 71T LT, @R EENES TV D
AR

23

SECTION 4. PRINCIPLES OF SOFTWARE VALIDATION Y7 h 7 =7 XNY 55— a > OJFH

This section lists the general principles that should be considered for the validation of software.

AKtrvaii, V72T ORYF— g0 LTEEBTRE AL Z IR _XTn 5,

4.1. REQUIREMENTS B3R

A documented software requirements specification provides a baseline for both validation and
verification. The software validation process cannot be completed without an established
software requirements specification (Ref: 21 CFR 820.3(z) and (aa) and 820.30(f) and (g)).

LEEINTZY 7 U2 T ERAFEEIIAN) T =2 a v bR T 4 r—2a v OR—AT 4 Th
e Y7 =T N T—varruat AL, MLV T U T ESRMAEEE A LIZ5ERE LRV (Ref:
21 CFR 820.3(z) and (aa) and 820.30(f) and (g)).

4.2. DEFECT PREVENTION /R oD [E] 38

Software quality assurance needs to focus on preventing the introduction of defects into the
software development process and not on trying to “test quality into” the software code after it is
written. Software testing is very limited in its ability to surface all latent defects in software code.
For example, the complexity of most software prevents it from being exhaustively tested.
Software testing is a necessary activity. However, in most cases software testing by itself is not
sufficient to establish confidence that the software is fit for its intended use. In order to
establish that confidence, software developers should use a mixture of methods and techniques to
prevent software errors and to detect software errors that do occur. The “best mix” of methods

depends on many factors including the development environment, application, size of project,

language, and risk.

V7 MY =T OWERERT., V7 M= T BT RCKMAE LTS SRNWI SITESE Y THA
T, V7 U277 a— ROEBEZRALBKET LRI, Y7 MU =2T7a— RN 7 A NOKE EZEANT
LZ2ETIERY, Y7 U7 TARMEL, YT MU T a— ROEBENRRER LTS0S 2 &
D72V REINTWD, FlxiE, Z< DY 7 by =T IXZOBHEED =D, RUERIZT A R TE 72
W, Y7 MU T DT A MINERIEETHD, LL, ZLAEDORE, V7 hv=TOT A NI,
V7 by T RERLEAREZHAETLOTHS EWHEEELRZRIET S LT, +02bo TR,
BEMEZRIET 221213, V7 My =T7THBEZ. Bx0FEET 7=y 7 &2nagby¥, Y7 U=
TOZT—%EEL, V225V 7 =T OTT—%FALRTIER S0, ko “XA K3

v A7 BRREEE, TV r—Tar, Tedas FoE, 538, U A7 EL OBERITIRIET
%o

24

4.3. TIME AND EFFORT R[5 & %5

To build a case that the software is validated requires time and effort. Preparation for software
validation should begin early, i.e., during design and development planning and design input. The
final conclusion that the software is validated should be based on evidence collected from planned

efforts conducted throughout the software lifecycle.

V7R =T BN T = FERTOWODRAEEY 723 2 Lid, BREFHhEET L, Y7 o7 A
U7 —a o OMERIL, &G BRFTERRERIER L O RWRHIATbN 2 & ThD, Y7 MY
=T BN F— b ENTREIRERIZ, YT b =T T, 7Y A 7 VAR L CEE S L FHENIC SN
7293 N> BUEE LT RELC ZE S 72 1 T 72 B 7w,

4.4. SOFTWARE LIFECYCLE Y7 +y=7 A 7% A7)V

Software validation takes place within the environment of an established software life cycle. The
software life cycle contains software engineering tasks and documentation necessary to support the
software validation effort. In addition, the software life cycle contains specific verification and
validation tasks that are appropriate for the intended use of the software. This guidance does not

recommend any particular life cycle models — only that they should be selected and used for a

software development project.

VTR 2TNRYTF—aid, MLLizY 7 N =7 74 7% A 7 VBRENTIThbg, Y7 hY
2T TATHAINVE, V7 b7 =2T RN T =2 g VOFRADOYR— MIVERY 7 by =27y
=TV T RAEEEE, MAT, Y7 =T I7A4 7 A7 ME Y7 =T OEMT 5
BIZRE ST, FEDORY) 74— ar NV TF—va B A7 5T, RIA X RIRED T A
THA I NETILVEHRET L EOTIIRWA, Y7 by =THE oY 7 Moxt LT, @R ULEHT
HHDTH D,

4.5. PLANS EHE

The software validation process is defined and controlled through the use of a plan. The software
validation plan defines “what” is to be accomplished through the software validation effort.
Software validation plans are a significant quality system tool. ~Software validation plans specify

areas such as scope, approach, resources, schedules and the types and extent of activities, tasks,

and work items.

V7 TN TF—varyyutRiF, HEEBELTCER, BHIND, Y7 MU= T AN TF—
a VEHENE M VT R 2T RT3 VOBRRAIC L > TR LB bR DE N EERT D, VT
27 NYF— g CHEE, BERMWE VAT LAY =L THY ., #@H, 7 a—F, UY—R A
ra—)v, &, XAT | ANEET AT LDHX AT LR E O A WREICT S,

4.6. PROCEDURES FJEZE

The software validation process is executed through the use of procedures. These procedures

25

establish “how” to conduct the software validation effort. The procedures should identify the
specific actions or sequence of actions that must be taken to complete individual validation
activities, tasks, and work items.

V7 Ry 2T N TF—varruatRiR, RFIEECHRSTEITEIND, ZNOLTFIEET “Fo ko
W2 T R 2T AN F— g /@E&ﬂéﬂ&%ﬁéﬁﬁ“é@#%m?@é %':lllﬁi I, ZEARNUTF—v g UE
G, AT MNEETA T LEZRETH-01C, FEDOT /v are—HOT7 7 v a 2R LT
X782 570,

4.7. SOFTWARE VALIDATION AFTERA CHANGE ZE#DY 7 hU=zT7 R F— g v

Due to the complexity of software, a seemingly small local change may have a significant global
system impact. When any change (even a small change) is made to the software, the validation
status of the software needs to be re-established. Whenever software is changed, a validation
analysis should be conducted not just for validation of the individual change, but also to determine
the extent and impact of that change on the entire software system. Based on this analysis, the
software developer should then conduct an appropriate level of software regression testing to show
that unchanged but vulnerable portions of the system have not been adversely affected. Design
controls and appropriate regression testing provide the confidence that the software is validated
after a software change.

Y7 hU T OEHEVEIC LY NEL v WVBIBIC R SO RE L, HRR T v —s VAT
DAY VRO ENHD, VT PU =TI LR BT UNSREETS) PR STck,
Y7 =T DN T =g REEIE, BEBETOILENDD, WOV T MU RERLLD L
H. N F = YoaiE, EROEEONY F—2a VEFICH LITh D TR, koY 7k
VT VAT NIBNT, EEORM & FEE RO 2T UIR SR, ZoSHNcESE YT MY
=T BRA L, BEINTWRWA, BEZ D TRT WU AT LD, IR EZ T TN
EEFRTRH, VT EU =T OV Ly ayT A M@ VALV T RT IR B, REHEE
LRV T Ly ay T AN, YT MU TERKR, VT b2 T BN T — b ENRTZ I L OREE
ZHEZ5b0THD,

4.8. VALIDATION COVERAGE NV F— g UHiB

Validation coverage should be based on the software’s complexity and safety risk — not on firm
size or resource constraints. The selection of validation activities, tasks, and work items should
be commensurate with the complexity of the software design and the risk associated with the use
of the software for the specified intended use. For lower risk devices, only baseline validation
activities may be conducted. As the risk increases additional validation activities should be
added to cover the additional risk. Validation documentation should be sufficient to demonstrate
that all software validation plans and procedures have been completed successfully.

N F = a VOFPIZ, Y7 MU =T OBHEME L LZRY) A7 ITESSARE T, BERESLY V—2
DEIFNIESNTIIR SR, NU T =2 a Ul Z A7 AEET A T LO@EEIL, Y7 FU =T

26

FFOBEMME L BEICER LB E oY 7 by = 7 OMRRICBI#E Lz Y A7 2l d 5 & Theid ik
RHIRV, U A7 PMROBEERICR L TiE, X—=A T A B2 7o) T =3 a AEBO AR FETI NN
TRV, URAIZBHINT 51EE, 20U R ZIZHIET 2BMDONY F— a AFEPRNLE L 10D, N
T arXEEFLETOY 7 by 2T N T — g VHE & FIENEFICEE L2 Z L 2RT BT, &
gHLhhd,

4.9. INDEPENDENCE OF REVIEW L Yt = OJfis7

Validation activities should be conducted using the basic quality assurance precept of
“independence of review.” Self-validation is extremely difficult. When possible, an
independent evaluation is always better, especially for higher risk applications. Some firms
contract out for a third-party independent verification and validation, but this solution may not
always be feasible. Another approach is to assign internal staff members that are not involved in
a particular design or its implementation, but who have sufficient knowledge to evaluate the
project and conduct the verification and validation activities. Smaller firms may need to be
creative in how tasks are organized and assigned in order to maintain internal independence of
review.

NYF =g UEENT, “LE 2O LS SRR SWERFED RS2 VL T b R T iuiE s
5720, BTN T = a e THORETH L, TREAGRIE. FICU A7 BEnT 7Y r— g
YOG, ML LT Z T O 2 ENEICHEE LV, FFREICHN LY T =g AN
T—varOAELHL TV L2t H DA, ZOMRET, LT LLE LD TR, thoT 7
B—FiE, BFEOHF, bLEFA T YAV MY RS T eV NEFHEL, RY T 4 r—
vary, NUTF =2 a UEEETT) FOREEE b OO AL v T AN EMTH I ETh D,
BN S22ttt A TL B2 DML AMERF T 2720, Z 27 OB LB L TITEHL T U= A
T4 T THDLZENEEND,

4.10. FLEXIBILITY AND RESPONSIBILITY Zk#k{E & FE:

Specific implementation of these software validation principles may be quite different from one
application to another. The device manufacturer has flexibility in choosing how to apply these
validation principles, but retains ultimate responsibility for demonstrating that the software has

been validated.

IhoY 7 bo=T AN F=2a VFERIOBEANT, £7 7Y r—>va r Ta RSN H 5,
ARSI 1INY T =2 a VRERIOBEA TR RRKICRET D08, V7 by =T BN TF—hahT
WD Z & AT D IRAN R EBE L IRFTT 5,

Software is designed, developed, validated, and regulated in a wide spectrum of environments, and

for a wide variety of devices with varying levels of risk. FDA regulated medical device

applications include software that:

V7 MU =TI WIEVEREORMHIIS T T, £LTY A7 LYULORR DSOS T, &

27

. BAZE. NU T — b, ik STV 5, FDA HsHLEEKE O 7 7Y r—3 3 3, LT O %%
HLOV T N 2T HETe

-Is a component, part, or accessory of a medical device;

-Is itself a medical device; or

-Is used in manufacturing, design and development, or other parts of the quality system.

o EFERD L HR—FR L b, RN=Y, TV —-THD
o THNHENEWFRKITHLD
o UG FREFELBHIE., FOMME I AT LDONR—Y L L THEASND

In each environment, software components from many sources may be used to create the
application (e.g., in-house developed software, off-the-shelf software, contract software,
shareware). In addition, software components come in many different forms (e.g., application
software, operating systems, compilers, debuggers, configuration management tools, and many
more). The validation of software in these environments can be a complex undertaking;
therefore, it is appropriate that all of these software validation principles be considered when

designing the software validation process. The resultant software validation process should be

commensurate with the safety risk associated with the system, device, or process.

FEETIE, Z< DY Y —=ANLRD Y7 T aviR—3x2 MIT 7Y r—va VOERICHN,
obnsd Bl RN Y 7 vy 2T AT e vz - YT N2 T 2 RNT I RV T R
T, =T vxT), MAT, VY7 bhov=zT7avi—3xrMi, Z2<OBRRLT7+—203H5 B 7
PVl —2a VT 2T | AR—FT ATV RT A, A (T TRy H, a4 SL—
3 VEHY —L ZOfh), TNOREICBITDLY 7 M T N T a0t B EEL D,
TPz, VY7 M 2T R T =2 a I aeRAERET A, I ToY 7 Ny T R F—
a Y OFANBESND ZENBEUTHD, JEHRY 7 2T N F—=varTFutRid, Y A7
L, HgR, e RICEET2ZA Y A7 IZHEIL TWRITIUER bR,

Software validation activities and tasks may be dispersed, occurring at different locations and
being conducted by different organizations. However, regardless of the distribution of tasks,
contractual relations, source of components, or the development environment, the device
manufacturer or specification developer retains ultimate responsibility for ensuring that the

software is validated.

VIR =T R T =g OIFEE X A3, Bpdbur—a o TREZY BR5MMIZE0 E
TEND Z &b EnsaedEndH 5, LirL, ¥ A7 OnkMbk, ZFEKR, 20 —x> bV
V— A, BAREREEICEIMRA <. BRI E S L UIHARERRBEE X, Y7 b =T8N F—hanT
W5 Z L ERAET D B AR 5,

28

SECTION 5. ACTIVITIES AND TASKS {E&he 27

Software validation is accomplished through a series of activities and tasks that are planned and
executed at various stages of the software development life cycle. These tasks may be one time

occurrences or may be iterated many times, depending on the life cycle model used and the scope

of changes made as the software project progresses.

VTR T NI TF—=aid, Y7 MU= THETA 7 A 7 VOffx 2B TRHEL, FEITESND
—HEOIEENE X AT BB L TR TTH, INHLXATEX, Anehd 74 7947870 E V7 b
V7 7uvey hatEAL LTOELORIZLY, BENR—EIOZ L HHIUE, MR K S
nsxzEtbbdbsb,

5.1. SOFTWARE LIFE CYCLE ACTIVITIES Y7 sV =7 A4 7% A 7 NVIEE)

This guidance does not recommend the use of any specific software life cycle model. Software
developers should establish a software life cycle model that is appropriate for their product and

organization. The software life cycle model that is selected should cover the software from its

birth to its retirement. Activities in a typical software life cycle model include the following:

AKTA B AIEEDY 7 NI 2T T4 TV A 7 NVETIADOIERAZEIO L O TR, Y7 b=
THARE L, B EMHRICED R Y T N =T TA T A I VET VEBE LR IT U b, BE
LI T RO =T FATHA T NVET VL, V7 MU =T OFENOEEE TE I NN—F5H TRITH
e b, —RRY 7 N =T 74 7Y A 7 VBT IVOIEMILU T2 ET

- Quality Planning

- System Requirements Definition

*Detailed Software Requirements Specification
- Software Design Specification

- Construction or Coding

- Testing

- Installation

*Operation and Support

- Maintenance

- Retirement

o BT

o VAT AHERER

o FEMiZeY 7 N = T ELRMARE
o V7 MU T EGEHIHE

o W a—FT 17T

e T AR

o HA

29

o JEMLHAR— K
o AUTFURA

o PEIE

Verification, testing, and other tasks that support software validation occur during each of these
activities. A life cycle model organizes these software development activities in various ways
and provides a framework for monitoring and controlling the software development project.
Several software life cycle models (e.g., waterfall, spiral, rapid prototyping, incremental
development, etc.) are defined in FDA’s Glossary of Computerized System and Software

Development Terminology, dated August 1995. These and many other life cycle models are

described in various references listed in Appendix A.

RV T hr—vary, TAM ZOMY 7 b =T N F—va a2V R— b 52 A71F, KIEH)
DIEICFATSIND, TA TV A ZNVET VL, e RGIETY 7 MU =7 BRBIEBZMEL. V7 ~Y
=THE T oY= PRS- L, BRI 7 L—L V=7 2T 5, KOorDY T MU =T T4
THAINETN Bl O =2 TH—)b ANA TN BERAE T 0T =7 b BINRREE.) 13
1995 % 8 H s+ FDA @ Glossary of Computerized System and Software Development Terminology,|Z T/E & &
NTW5, ZbEZTDMEL DT A 79 A 7 LEF /LT Appendix A DEE LRk TRREH SN TV 5,

5.2. TYPICAL TASKS SUPPORTING VALIDATION #E¥H)Z X7 P HR— RN YF— a3 v

For each of the software life cycle activities, there are certain “typical” tasks that support a
conclusion that the software is validated. However, the specific tasks to be performed, their order
of performance, and the iteration and timing of their performance will be dictated by the specific
software life cycle model that is selected and the safety risk associated with the software
application. For very low risk applications, certain tasks may not be needed at all. However,
the software developer should at least consider each of these tasks and should define and
document which tasks are or are not appropriate for their specific application. The following

discussion is generic and is not intended to prescribe any particular software life cycle model or

any particular order in which tasks are to be performed.

KT NI =2T TA T A TVEIZIEL, V7 MU 2T BN T — SN L OREREEMNT D

CHRIF)” 7o X2 AT NB S, UL, EITSNDH X AT FATT AN, FATOMRVIRLEZ A I T
X, BESNTY 7 NI =2T FATHAINVETNAVEY 7 Ny T 77—y a VBT L4
AZIZEVRET D, VAIZPRETHERWT FY r—2 3 20T, BB EDRNWT 27 5 X
bnd, LL, Y7 b= THEET, HER, CWO&EX A7 E2EEL, BEOT TV r—yav
IZBWTEDOX ZA7 R L iE, @Y TRV ZERLLE(LTHZENRMNETH D, LLF Ok
TR b DT, HEDY 7 NI =T T7A TP A I NVETAREITIND X A7 DIEEREFRTHH
DTILZ2\N,

30

Eﬂl.

5.2.1. Quality Planning 5 #H

Design and development planning should culminate in a plan that identifies necessary tasks,
procedures for anomaly reporting and resolution, necessary resources, and management review
requirements, including formal design reviews. A software life cycle model and associated

activities should be identified, as well as those tasks necessary for each software life cycle activity.

The plan should include:

R LR OFENL, MR Z AT BEMOWE L RRICET 5 FIE, L) Y —A ERRT
PA L E2b BT RX—V A PV E2BREZFFET DMEE RO R TNIER LR, Y7 hy=T
TATHA I NETNVEETLERNIEL, &£/ 7 V02T T4 T A 7 VEBICEBWCTRERZ A
7 LRBRICHIfEIZ T RETH D, FHHEIILL T2 &L

- The specific tasks for each life cycle activity;

- Enumeration of important quality factors (e.g., reliability, maintainability, and usability);
Methods and procedures for each task;

- Task acceptance criteria;

- Criteria for defining and documenting outputs in terms that will allow evaluation of their
conformance to input requirements;

- Inputs for each task;

*Outputs from each task;

*Roles, resources, and responsibilities for each task;

-Risks and assumptions; and

- Documentation of user needs.

o KTATHA T IIEIAFEDZ A

o HENWEERO—-FER (F : FEM:. RertE. A A

o KHAYDNiLETIE

o B AU DZNKM

o ANERICHEGT D LFHME SN D I DER & SCEL DKM
o KHATDANT)

o KHARITMBLDOHT

o HHEATDEE, VY- Bt

o URTLUE

o —HF=—XDLEA

Management must identify and provide the appropriate software development environment and
resources. (See 21 CFR §820.20(b)(1) and (2).) Typically, each task requires personnel as well

as physical resources. The plan should identify the personnel, the facility and equipment

resources for each task, and the role that risk (hazard) management will play. A configuration

31

management plan should be developed that will guide and control multiple parallel development
activities and ensure proper communications and documentation. Controls are necessary to
ensure positive and correct correspondence among all approved versions of the specifications
documents, source code, object code, and test suites that comprise a software system. The
controls also should ensure accurate identification of, and access to, the currently approved

versions.

VX =V AL NI Y 7 by o TRRERE LS Y Y — A ZRE L, i LT iuE e 57220, (See
21 CFR §820.20(b)(1) and (2).5:P8), — XM X A7 1IXWERR Y Y — R LRERICAB A2 ME &35,
FHETIEEZ A7 L) A7 EE(AYF— DT EENCK L, AB, iR ORIEDO YV Y — A& RET
Do AT 47 L—ra UEBGETIE, BEROWATT OHBEBHAER L br—T 5 X5 1ERK
L, BURaa=r—ya 8 CEEFTELRTUER L2, 55 ERFE A=Y a Vbl
HHEEE, V—RAa—R, A7V ba—R, YT NIV T VAT AEHBRTHT A NNy r—T Y
7 MZEWT, ar b= Ot & EENRIES N TWD Z EnERkand, £7car hr—b
%, BUEOEKGRIEN—Y a VEEMIZFEL, 77 B RAERIEL R T IR 67220,

Procedures should be created for reporting and resolving software anomalies found through
validation or other activities. Management should identify the reports and specify the contents,
format, and responsible organizational elements for each report. Procedures also are necessary

for the review and approval of software development results, including the responsible

organizational elements for such reviews and approvals.

FIEEFIZ, NV T = a U REOMEBZBEL TR LY 7 MY =T ORFEEZ®E L, LT 57
IR SN D, v R =V A MIREZHR L, FLA—FONE, 7r—~v b, MEOREEE
ZRAHEICT 5, FIEFTEL, Lo, ARREOMBMOBMLERREY 7 U =THERROLVE 2
BLOEBIZBNTHMETH S,

Typical Tasks — Quality Planning

-Risk (Hazard) Management Plan

- Configuration Management Plan

- Software Quality Assurance Plan

—Software Verification and Validation Plan

*Verification and Validation Tasks, and Acceptance Criteria

*Schedule and Resource Allocation (for software verification and validation activities) q
Reporting Requirements

—Formal Design Review Requirements

—Other Technical Review Requirements

Problem Reporting and Resolution Procedures

- Other Support Activities

—MREGERY - MEETE

32

o URZ (NH—R) EFHEGFHE
o TILT 4V L—3 g UEHEE
o VT LU =T i RER]
— VTR =T R T 4 =g N T = g VR
O RXVT74bh—vardbRN)Fr—rar 27 ZAGMHE
O AT Va—nE)Y—25 (V7 =T X) 74— ar N F—ya U ihE)
O ZERFEHORE
— AT VA LB 2B
—ZDMT 7 =h e 2Bk
o [HEEHIE & ARITIE
o ZOfthYAR— NEH)

5.2.2. Requirements ZERE

Requirements development includes the identification, analysis, and documentation of information
about the device and its intended use. Areas of special importance include allocation of system
functions to hardware/software, operating conditions, user characteristics, potential hazards, and

anticipated tasks. In addition, the requirements should state clearly the intended use of the

software.

ZUROEEIL, COERDOFEN, i, Han & TOMEHBICET 2IHMOLEEZET 5, FFiC
BERGBHLE LI, N—FRU=T/VT7 Ny =T OVAT AEREOE] Y 4T, BERRL, 2 —F DR
P, WBIEENERME, TRISh2Z 270365, AT, ERFHIZ, WARICY 7 Ny =7 OEHENZ
AL ThDZ &,

The software requirements specification document should contain a written definition of the
software functions. It is not possible to validate software without predetermined and documented
software requirements. Typical software requirements specify the following:
Y7 MU =T ERAKRETIE, V7 PV =T HEEOERENEZIRLINTVOLIRETHD, Y7 b=
TERFEPERNIER SN, XEESRTORWRETIE, Y7 Mo =T7 2R)T =52 LR T
g, —Mke Y 7 b = 7 ELRFEIILL T A BRI T D

- All software system inputs;

- All software system outputs;

- All functions that the software system will perform;

- All performance requirements that the software will meet, (e.g., data throughput, reliability, and
timing);

- The definition of all external and user interfaces, as well as any internal software-to-system

interfaces;

*How users will interact with the system;

33

- What constitutes an error and how errors should be handled;

*Required response times;

- The intended operating environment for the software, if this is a design constraint (e.g., hardware
platform, operating system);

- All ranges, limits, defaults, and specific values that the software will accept; and

- All safety related requirements, specifications, features, or functions that will be implemented in

software.

o BT NIT VAT LADAS

o BV T R NUT VAT ANLOHS

o VT MU T VAT LATHEN SN D EHERE

o VT MU T N, TRTOMERER B 7—% - 2A—Ty b FHEME ¥
7)

o WHDY 7 NU T VAT LA U H—T 2 —ADMIZ, BB IR —PHEFTXTOA & —
7z — ADFEF

o —H LU RT AOEAEH O

o T T —DJRR & kAL

o WAL ISE]

o RENZHIKINHLHED, V7 MU =T OB (B : "~ FU=77T7y 7+ —Lb &
R —=FT 4 VTV AT D)

o VI MU TRRZIFANLNLIEHM, VIy b, TT74NN, FEEDMHE

o VI MNY=TITEASNDH LD LLAMEER, AR, Fr. e

Software safety requirements are derived from a technical risk management process that is closely
integrated with the system requirements development process. Software requirement
specifications should identify clearly the potential hazards that can result from a software failure in
the system as well as any safety requirements to be implemented in software. The consequences
of software failure should be evaluated, along with means of mitigating such failures (e.g.,
hardware mitigation, defensive programming, etc.). From this analysis, it should be possible to

identify the most appropriate measures necessary to prevent harm.

VT RN 2 TRATENRIL, VAT AERBEE TS 0t RTHBIC KM LT V=) RS a
BRIZHRLTWD, V7 MU= 7ERARETIE, V7 FU =T ICHEASNEZREROMIZ, 2
TLANDY 7 8T =7 ORI X DEIER e fEBRIE S IR E LT 672y, Y7 b =T R
faofERIZ, O KRMEERET 2T (Bl "~ RFRV =70, T4 7= 77ar73I07)
ERWCTIHEITRETHD, ZOHHICEY ., AFELELELR, Kbt FEEHETHZ LN
AEETHDHEBZZBILD,

The Quality System regulation requires a mechanism for addressing incomplete, ambiguous, or

conflicting requirements. (See 21 CFR 820.30(c).) Each requirement (e.g., hardware, software,

34

user, operator interface, and safety) identified in the software requirements specification should be

evaluated for accuracy, completeness, consistency, testability, correctness, and clarity. For

example, software requirements should be evaluated to verify that:

M AT LB, R, AR, AR T OEREMOE DA = AL ENE LT D (See
21 CFR 820.30(c).), Y 7 b7 = 7 HERMAARFIC TER S NFERIL B "—Fy=T7, VY7 U=
T, a—Y AN —H A =T 2 — R EeM) | BB, et —BM. 7 A MRS, Bk
PE. BABYEIZ DWW CRHli S 2 T iU e 67220, BlxiX, V7 bU = 7 ERIZEB W T, LT O EFF
35 :

- There are no internal inconsistencies among requirements;

- All of the performance requirements for the system have been spelled out;
-Fault tolerance, safety, and security requirements are complete and correct;
- Allocation of software functions is accurate and complete;

- Software requirements are appropriate for the system hazards; and

- All requirements are expressed in terms that are measurable or objectively verifiable.

o ZURFHMICAEESN RN &

o VAT LDOEMRBERDFEMICHIE N TWND

o MFEFME, R, BX 2 VT 4 BERNELTEETHD

o V7 MU THREOEIV Y TREMTRERTHD

o VAT LDERIZH L, Y7 MU =T ERNEYTHD

o RELRFHMNHEFRE T, WEAITHEERTRER DL L THRAHNTWND

A software requirements traceability analysis should be conducted to trace software requirements
to (and from) system requirements and to risk analysis results. In addition to any other analyses
and documentation used to verify software requirements, a formal design review is recommended
to confirm that requirements are fully specified and appropriate before extensive software design

efforts begin. Requirements can be approved and released incrementally, but care should be taken

that interactions and interfaces among software (and hardware) requirements are properly

reviewed, analyzed, and controlled.

V7 MU =T EREFHDO L —Y U T 40 TlE, VAT AERFHIZHTD(0HD) 7 MU =
TERFEH, BIOVAZGMHERETOI =220 9, V7 MY =7 ERFHOBIEIZHW S
NDZEOMAHTRLILEIMZ, AT A L Ea BRI N S OE, BERFENEEICHT SN,
WYRIRRETH D Z L2 RBMER Y 7+ 7 = TGO A G E D ANCHER T 5720 TH 5, 2K
FHITAGE S, BMANIZY U —2AEND0, Y7 ho=7 (2L ThA— KRNy =7) BERFHTOMHA
EHEA U F =T 2= 2BHENC L B o, o, BESNDLZ DT TRREL D,

Typical Tasks — Requirements

*Preliminary Risk Analysis

35

- Traceability Analysis

—Software Requirements to System Requirements (and vice versa)

—Software Requirements to Risk Analysis

*Description of User Characteristics

- Listing of Characteristics and Limitations of Primary and Secondary Memory
- Software Requirements Evaluation

- Software User Interface Requirements Analysis

- System Test Plan Generation

- Acceptance Test Plan Generation

- Ambiguity Review or Analysis

—fRARY - BEREBIE

o THHIY AT 538

o ML—HEUT ¢55Hr
— V7 b= THERFEND VAT AEREE A~ GF L [FER)
— Y7 MU =T ERFENS U AT 3HT~

o —YPRHMEDER

o KHEDYV A NET T4~ — BH Y —XEY DOHIIR

o V7 MU 7 ERFEHOFAM

o VI N xzTa—WA L& —T7 x— RAFRFHESHT

o VAT AT ARNT T UAERK

o ZtET A N7 T U AERL

o RHREARLE 2 b LT

5.2.3. Design #X#

In the design process, the software requirements specification is translated into a logical and
physical representation of the software to be implemented. The software design specification is a
description of what the software should do and how it should do it. Due to complexity of the
project or to enable persons with varying levels of technical responsibilities to clearly understand
design information, the design specification may contain both a high level summary of the design
and detailed design information. The completed software design specification constrains the
programmer/coder to stay within the intent of the agreed upon requirements and design. A

complete software design specification will relieve the programmer from the need to make ad hoc

design decisions.

WEt7 AT, V7 bU = TERAMRETIE, BASND Y7 MU =7 ZimBny, WELRYE L
BT, V7 My TEEHERETIZ, ME Y 7 MU =TTV, EO X IIZIATT HEFHE L T
D, Tuvxl NOEMNE, ETITRFEEICHIE ST 7 =V OELET- DI, PHEICEREHE H2 PR
SE DD, RKEHEEREIL, BREtOR LT~) — LEMREREHEROM G 2B Wb D, FERK
L7y 7 bo = TEEHIEEIC L - T, AESNCERFEBLIORFORTIC T 0y I~ —/a—F—

36

DINOZEMTED, BRLEY 7 MU= TEGHERREICL Y, 0 rI~—37 Nk v 7 REGEtoRk
Wiz 4+ 50BN RD,

The software design needs to address human factors. Use error caused by designs that are either
overly complex or contrary to users' intuitive expectations for operation is one of the most
persistent and critical problems encountered by FDA. Frequently, the design of the software is a
factor in such use errors. Human factors engineering should be woven into the entire design and
development process, including the device design requirements, analyses, and tests. Device
safety and usability issues should be considered when developing flowcharts, state diagrams,
prototyping tools, and test plans. Also, task and function analyses, risk analyses, prototype tests
and reviews, and full usability tests should be performed. Participants from the user population

should be included when applying these methodologies

Y7 MU= 7 EEHI A ERICRIS T 2 LER B 5, M TH 720, BENCEH L T2—H¥ D
THRICK T HRFHI LV AE UM Eo=F —1X, FDA 7J>E@ LTV 5 b Kt CEKZRMETH

o HHEIZ, Y7 MU T ORFIZOL I REH O T —FERIZR D, A%%I’%#éIVV:
TV TR, BERRRGTELR . T, T A MR E KRBT - BRI T nE RITEVIAENHRETH

o BERORZ ML AAMEICETIMEIL, 7e—F vy — b, REX, 7o hZ ATV —L TR
ﬁ@@%%ﬁ_%ﬁfxgﬁ%éoik\&x&-%%%ﬁ YAZ 8, 7 h2ATF AN - L
Ba, BFOFHET A R BITHIRETH D, b FEmEEAT L8, =2—VE@REIISNT5 2
&

The software design specification should include:

- Software requirements specification, including predetermined criteria for acceptance of the
software;

- Software risk analysis;

- Development procedures and coding guidelines (or other programming procedures);

- Systems documentation (e.g., a narrative or a context diagram) that describes the systems context
in which the program is intended to function, including the relationship of hardware, software, and
the physical environment;

- Hardware to be used;

- Parameters to be measured or recorded;

- Logical structure (including control logic) and logical processing steps (e.g., algorithms);

- Data structures and data flow diagrams;

- Definitions of variables (control and data) and description of where they are used;

- Error, alarm, and warning messages;

- Supporting software (e.g., operating systems, drivers, other application software);

*Communication links (links among internal modules of the software, links with the supporting

software, links with the hardware, and links with the user);

37

- Security measures (both physical and logical security); and

- Any additional constraints not identified in the above elements.

V7 MU =T ERGHIRFIIU T2 Gt

o VI MU T DHKFHEDIDOBESNI-FMR L, V7 MU =7 ERHARE

o VT MU =T URTGHT

e BARFIEL a—FT 4 I HA RTA v (207 a s 0 7 FIE)

o N—RU=x=7 Y7 =T, WHNEEAZD, 7n s 7 ANER LX) ITHEET S A
T LKA LI AT L0E B 77747 LFarTRRANIAT 7T L)

e FHINANN—FRY =T

o HIE, FLERSN DT A—H

o mHEEE (my hm—AuYy s EEL) LWENTaERART T (F 7T Y XA)

o T—HIEELT X T —HAT T A

o Bl (mrhu—L T —%) OERELMEHINLGHTOBE

o TT— TTI—Lh BEAyE—V

o YT MU T Bl ARVL—T 4 T VAT AL, RTAN— ZTOMT TV r—a Y
ZANVEYS

o aa=s—ars (V7R THHEY2—LABOY 7, XY T Ry =T L&D
Vo7 N=—Ru=7,tDV s a—FLpl))

o EXUT %R WE XU T 4, WENEX2UT 1)

o FEIFIEHICHIRE SN TWVRWNZE OB A HIF)

The first four of the elements noted above usually are separate pre-existing documents that are
included by reference in the software design specification. Software requirements specification
was discussed in the preceding section, as was software risk analysis. Written development
procedures serve as a guide to the organization, and written programming procedures serve as a
guide to individual programmers. As software cannot be validated without knowledge of the
context in which it is intended to function, systems documentation is referenced. If some of the
above elements are not included in the software, it may be helpful to future reviewers and

maintainers of the software if that is clearly stated (e.g., There are no error messages in this

program).

EFE. ROIOMOETOFEIL, V7 Y= 7 REHIAREICSROGRE LTERVIAENTND R =
AU RNEFRRDZODTHD, V7 MY =T ERAKEFIIA T P a o TY T M =T VXI5 E L
Ham S 7o, BB FIEZITEMICH LA ROZHEZRZL, vl I I FFIEEDZ, x0T Rm
IR LA REREET S, Y7 hy =73, BRT LY 7 MU =7 OBRRICET 2 A% 72 <
LAY T—hENDZEEIRAFERDT, VAT AXLEEZSZRTHZ LD, bL, EROFEHD
oMWV T MU = TICEENTORWEGATL, TNORIHEICETHEIND Z &%, fRkereaT
RV T MU =T ORFEREIC L >THMERD, Bl 70 7T 2 NI T —A v —JI3FEL
20N,)

38

The activities that occur during software design have several purposes. Software design
evaluations are conducted to determine if the design is complete, correct, consistent, unambiguous,
feasible, and maintainable. Appropriate consideration of software architecture (e.g., modular
structure) during design can reduce the magnitude of future validation efforts when software
changes are needed. Software design evaluations may include analyses of control flow, data
flow, complexity, timing, sizing, memory allocation, criticality analysis, and many other aspects of
the design. A traceability analysis should be conducted to verify that the software design
implements all of the software requirements. As a technique for identifying where requirements
are not sufficient, the traceability analysis should also verify that all aspects of the design are
traceable to software requirements. An analysis of communication links should be conducted to
evaluate the proposed design with respect to hardware, user, and related software requirements.

The software risk analysis should be re-examined to determine whether any additional hazards

have been identified and whether any new hazards have been introduced by the design.

VA NV EY S =] ﬁbhéﬁ@’i%oﬂwamﬁkéoV7%7:7%§%ﬁﬁ\%%ﬁ%
4. e, —BMERHY, HA, WIET, AT T U ARTENEZHWTH72010/Tbh b, EHRE
DY T U= THERE (F BV TS (CBIT MU RBEEIL. VT N2 TOERENRRD LN
t%@ﬁ%%ﬂU?—ya/_%%ﬁﬁgﬁéﬁ%bfw< EThDH, VT MY TR, =
vhu—Tu— F=FTu— BHM AT A X, ATV OEI YT, BAEOSHC
ZOMBFHIET 2 FHEZ G AREERS S, PL—FE U T oHE, Y7 hU = TEENBY T Y
=7 DRFEREEMTHHDTHDHZ L ZGENATH-OICFATIND, T TRVWERFHAFFET D
EifE LT, =B E YT 4 HOWITERFOTXTOHENRY 7 by = 7 HERIZOWT ML —XA[ETH
HZEBRIELZRT NIRRT, aa=r—va U Z7000E, N—FRuxo7, —W B
T5Y 7 by =7 ERFHEICE L TRE SNZRE M T 2 72 0ldThiei il o2y, V7 k
T 7 U AT ST, BEHT XV BINOMEREEE S TWRWDN, T RfERA 726 ST
DEHETT S0, BFRESND,

At the end of the software design activity, a Formal Design Review should be conducted to verify
that the design is correct, consistent, complete, accurate, and testable, before moving to implement
the design. Portions of the design can be approved and released incrementally for

implementation; but care should be taken that interactions and communication links among

various elements are properly reviewed, analyzed, and controlled.

Y7 MU =T EREHEEORKIC, REHNIEMRET, —HLTRY, 2T, EMT, 7 A2 MPIARERD
DTHDHZ LT D70, REPSEEIBITT 2N, EXRT VA L2217 & ThH
Do BXEFO—EBIT, BBV, BIICAR S, VY —R&END, Lol ke RERROMALE
Meéala=r—yva V7@ ea, o, BEEN TS Z L 2RiE LRI IER bk
[

39

Most software development models will be iterative. This is likely to result in several versions of
both the software requirement specification and the software design specification. All approved
versions should be archived and controlled in accordance with established configuration
management procedures.
FEAEDY 7 MU= TRABET VTRV IELZ LR 2 LIThD, DEV VT MU =T ERIER
EFELY T MU TEFHMEERE OO A=V 3 L E LD LR D ATREMENE D, KRR SN —
Vast, arva 7 b—va VERFIRICE ST T =047, BEIN RTINS0,

Typical Tasks — Design

-Updated Software Risk Analysis

- Traceability Analysis - Design Specification to Software Requirements (and vice versa)
- Software Design Evaluation

Design Communication Link Analysis

*Module Test Plan Generation

- Integration Test Plan Generation

- Test Design Generation (module, integration, system, and acceptance)

—BRARY - %3
o Ty TF—h ENEY T hU=T VAT
o ML—HVEUT 458 - REHMEAREFENSG Y 7 by =7 ER (b [AER)
o V7 MNU =7 AN
o FHitaIa=r—va VIO
o TV a— LT ANTT MER
o ATV L—arT AT MR
o TRANKEMER (BEVa—N, AT —ay, YATFA, TIVESELR)

5.2.4. Construction or Coding BEEZiXa—T 47

Software may be constructed either by coding (i.e., programming) or by assembling together
previously coded software components (e.g., from code libraries, off-the-shelf software, etc.) for
use in a new application. Coding is the software activity where the detailed design specification
is implemented as source code. Coding is the lowest level of abstraction for the software
development process. It is the last stage in decomposition of the software requirements where

module specifications are translated into a programming language.

VY7 RO =TIE BT TV = a VEERT AR, a—T o7 (e s T I0r) £IFBEE
Y 7 hyxTarR—xF Bl G477V —RFT7 - HF -z T - VTR TRENS) O
MAEDTIZLVEEIND, 2—T 4 v 7T HIAREN Y — A a— e L THEAShD Y 7
N2 TIEEN ChH D, 2—T 4 71XV 7 by = TRE T 2 20K RSN RHSICH -5, E
Va—WERN T e ST IV VEEICEERA NS, VT MY = T EROSMEICEIT D &R TH
Do

40

Coding usually involves the use of a high-level programming language, but may also entail the use
of assembly language (or microcode) for time-critical operations. The source code may be either
compiled or interpreted for use on a target hardware platform. Decisions on the selection of
programming languages and software build tools (assemblers, linkers, and compilers) should
include consideration of the impact on subsequent quality evaluation tasks (e.g., availability of
debugging and testing tools for the chosen language). Some compilers offer optional levels and
commands for error checking to assist in debugging the code. Different levels of error checking
may be used throughout the coding process, and warnings or other messages from the compiler
may or may not be recorded. However, at the end of the coding and debugging process, the most
rigorous level of error checking is normally used to document what compilation errors still remain
in the software. If the most rigorous level of error checking is not used for final translation of the
source code, then justification for use of the less rigorous translation error checking should be
documented. Also, for the final compilation, there should be documentation of the compilation
process and its outcome, including any warnings or other messages from the compiler and their

resolution, or justification for the decision to leave issues unresolved.

a—F 4 VU TIHEE, @RI R I I VT ERRERHGDON, A= RERERHET LA L= a0
ICE, RTS8 (v 7 na—F) OFALSELET S, Y—Ra— RIS —F
VT 7Ty R —AIhbyTar M VERIRFATHRR SN D, eIV EREE Y T b
U THEY =V (TR T T, Dk, aroRAT) ORELZRET DI LI, %Ik < SEFHE &
A7 (] BIRLEZEBEOT RNy X7, TANY—= VO M) ~OREEZEE LTIk
WV, AR TN, A= ROT AN X U T ETRTH T T =y J BEEDO LR a v R T
ffiLCWar bbb b, BAeDHLANOTT—Fzy s ida—T 477 RA B L THEHIN, =
YR TINEOEESZOMA v — VTR SN EAE b hIUE, RS h VWAL H DL, L
L. a—=TFT 407, TRy X T 7t AOREEETIX, BF, ZbELWLSLDOTT—F =y
EFEML, EOXI T Ny 72T =RV 7 =TIk TN L0 aE3E T 5, b LkbE LT
T—F v &Y —AT— RORKEEFRICER Liaho 12548, BEEOL BRI —F = v 7 &4l
AT ESRIEZ CE L LT b, Emk&feT Ny 7L LT, ar 34 706 0%E
REOMD A v —T ZOMRES L ATRMROMEZ R L CHB<GEDOIEYSRIEHRE L LD
2, TR T T aEREZOREE LE T RETH D,

Firms frequently adopt specific coding guidelines that establish quality policies and procedures
related to the software coding process. Source code should be evaluated to verify its compliance
with specified coding guidelines. Such guidelines should include coding conventions regarding
clarity, style, complexity management, and commenting. Code comments should provide useful
and descriptive information for a module, including expected inputs and outputs, variables

referenced, expected data types, and operations to be performed. Source code should also be

evaluated to verify its compliance with the corresponding detailed design specification. Modules

41

ready for integration and test should have documentation of compliance with coding guidelines

and any other applicable quality policies and procedures.

EEITHBEIC, V7 =T a—F 47 7av R BT L0ERY > — L FIEA ML 5B ED o
=T AT HARTAERHA LTS, Y—Aa—RiE, HEOa—FT 17 HA NI %#EFL
TWBZ EEFAT L0, sl bun, HA RTA id, S, AX AL, EHEE
B, a A NIETLa—T 4 TOREEELRETHDH, a— Fa A MIE, TRENWDAT -
M, 2RI HEH, THITL27 2247, FAT7E8NHARV—2a Rl £EVa— T LA
M7 F e EOBRERYPETRETH D, V—RAa—Rb o, fET DM 723G HERRE 2857 L C
WA Z EEIEAT A0, sHMid g niE e dbian, AT 7 L—va T A NOWEfFNRE S TN
HEV2—/ME, AT 4T HA RTA 2 EZOMEGRBERY O —B L OFIEELZEFLTND
ZEEICEA LTI B0,

Source code evaluations are often implemented as code inspections and code walkthroughs.

Such static analyses provide a very effective means to detect errors before execution of the code.
They allow for examination of each error in isolation and can also help in focusing later dynamic
testing of the software. Firms may use manual (desk) checking with appropriate controls to ensure
consistency and independence. Source code evaluations should be extended to verification of
internal linkages between modules and layers (horizontal and vertical interfaces), and compliance

with their design specifications. Documentation of the procedures used and the results of source

code evaluations should be maintained as part of design verification.

V—2Z a— RFHliT@EE, 2— FREB LN — R+ —27 20—t FEmEInd, ZDX57%H
ERDHTIE, 2 — FE2FETT LN T =2 SHDNFERZRMET 5, BEEMITICEY, fxrox
T—HHELCREL, oY 7 MU= TEINT A MECEREZHLTHI EREME D, BT, @
IREHOT, v=a27 /v Wllk) Fzyv 7 ZHNT—BELMNIEE2HETHZLEHTED, VY —A
a— REHiL, EY2—nE LAY — (BEFWEKEFWOA P Z—T7 x2—R) HONHDOY > —
PONY T 4 r—va CETHME KT L RE T, REMIRELZ BT LRI R 620, S
TeFIEE L Y — 2 a— Nl ROCEFIL, RERY 74— a O—E LTRIET D,

A source code traceability analysis is an important tool to verify that all code is linked to

established specifications and established test procedures. A source code traceability analysis

should be conducted and documented to verify that:

Y—=AA—=Rh—=%EY T 4 5ME, B — FPEELIARREL T A FFIEFZY 7 LT0D
ZLERGET DEERY -V ThDH, Y—Aa— R M=% U T 1 oHrid, IFOHEA 237 LE
tT5bDTH D,

-Each element of the software design specification has been implemented in code;

*Modules and functions implemented in code can be traced back to an element in the software

design specification and to the risk analysis;

42

- Tests for modules and functions can be traced back to an element in the software design

specification and to the risk analysis; and

- Tests for modules and functions can be traced to source code for the same modules and functions.
o VT MY =T REHMIREOSERIL, 2 — FITHARAENLTWD

a— NZHAAENTLEY 2 — L EHRRIL, V7 MU 2 TREHMIREOER L U X7 5T~ b

L —AT&5
o EVa— JLEMEEDT A NI, VT MU =T REHEREOERZ L Y AT O ~FL—ATE 5
o EFUa—JLEMREDT A MI, BILEYa2— L EHEEODY—2Aa— R~ L —RATE 5

Typical Tasks — Construction or Coding
- Traceability Analyses
—Source Code to Design Specification (and vice versa)
—Test Cases to Source Code and to Design Specification
*Source Code and Source Code Documentation Evaluation
*Source Code Interface Analysis
- Test Procedure and Test Case Generation (module, integration, system, and acceptance)
—fREIZ X7 - EEE T T T
o ML—H¥EUT 15547
— Y —Za— I bkt akE G b [EER)
—T A RNF—=RnG Y —Aa— R L OEFHIARE
o V—Ra— & YV—Za— FIEFH
o V—RAa—RNAUHE—T = — A5
TANPIEEE T A Mr—2ERK (EVa—V, ST T b—vary, YATA TIETH

VR)

5.2.5. Testing by the Software Developer Y7 b7 = TBHEEIZLSET X

Software testing entails running software products under known conditions with defined inputs
and documented outcomes that can be compared to their predefined expectations. It is a time

consuming, difficult, and imperfect activity. As such, it requires early planning in order to be

effective and efficient.
V7 MU =TTARNMI, PHISNAME LR TE A L), BREADAT]ECEAL LT R HFE

FTOROEMEOTT, Y7 My =7 ®-GEZFATT L EPMEL IND, THITRFRHIANY | N
T, REEREINTH D, - T, RO, WROTH L L5, REFHRNLHEL 2D,

Test plans and test cases should be created as early in the software development process as
feasible. They should identify the schedules, environments, resources (personnel, tools, etc.),

methodologies, cases (inputs, procedures, outputs, expected results), documentation, and reporting

43

criteria. The magnitude of effort to be applied throughout the testing process can be linked to
complexity, criticality, reliability, and/or safety issues (e.g., requiring functions or modules that
produce critical outcomes to be challenged with intensive testing of their fault tolerance features).

Descriptions of categories of software and software testing effort appear in the literature, for

example:

TAREEE T A M= A, WY YT by = TR B AOWMICIERT S 2 LR ER
Do Flo, A Va—, B, UV Y—2 (NE. Y—n%), Fikwm, 77— (AN, FIEE. H
71, AEROMIFHE) . SCEAL, FMFEOWRERHGETEX 2O TRITIEIR S22, TA Mot RAE#
CTERIND I ORI, MM, BN, EiEtk, Z2tofE (B FEOFFA L ORIER 72
FTAMIEY, ERAEEAZAEUFEEEL T 2 —/LICER) ICEET S, Y7 by =T hTa)—L
V7 MU =TT A RORAL, LERIZFEEH STV D, iz

*NIST Special Publication 500-235, Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric;

*NUREG/CR-6293, Verification and Validation Guidelines for High Integrity Systems; and
‘IEEE Computer Society Press, Handbook of Software Reliability Engineering.

e NIST Special Publication 500-235, Structured Testing: A Testing Methodology Using the Cyclomatic
Complexity Metric;

e NUREG/CR-6293, Verification and Validation Guidelines for High Integrity Systems

o [EEE Computer Society Press, Handbook of Software Reliability Engineering.

Software test plans should identify the particular tasks to be conducted at each stage of

development and include justification of the level of effort represented by their corresponding

completion criteria.

V7 Ry =T T A FEHEEL, SBEBEBECIEITINDIX AT ZR/HE L, BEMEORM~DOx % 3
FTEMEOIELMEEZTLIHLI-HDTH D,

Software testing has limitations that must be recognized and considered when planning the testing
of a particular software product. Except for the simplest of programs, software cannot be
exhaustively tested. Generally it is not feasible to test a software product with all possible inputs,
nor is it possible to test all possible data processing paths that can occur during program execution.
There is no one type of testing or testing methodology that can ensure a particular software
product has been thoroughly tested. Testing of all program functionality does not mean all of the
program has been tested. Testing of all of a program's code does not mean all necessary
functionality is present in the program. Testing of all program functionality and all program code
does not mean the program is 100% correct! Software testing that finds no errors should not be

interpreted to mean that errors do not exist in the software product; it may mean the testing was

superficial.

44

VIR =TT AMIBNWT, FFEDOY 7 by = TR OT A N EFHET HE, Rk LEE L T,
RFNERLRVWRARS D, by TN Tar T AT V7 Y= TIIRIERMICT A &S
oz &idwn, bbb, BFHARERA Ty FERAWTY 7 by =T ET A M52 EIEA
FRETC, F7 0T LAEITHEOSH DL T — X T ARRET A NTHIELRARBRTHD, FE
DY 7 N =T HEPFIERNICT A RSN L E2HRICT D, TARCT A NFIEwROBAEOX A~
IFEELR, 27877 MEREOT A NI, 2787 T ART A NSNEZ EEBERTHOTIE R
W, BTRT T A= ROTANMI, TR T AINEL D CEEPFET D L ERTO T
W, BT T AEREE ST ST A= ROT A NI, 7T AN 100%EMTHD I L EEKRT
LZOTER, TT7 =% LNV 7 02T T AN, V7 by =TI T —BEE L7
WERERT Th W Ry, Y7 hU =277 A MIRENR D THLAREENHHHTH D,

An essential element of a software test case is the expected result. It is the key detail that permits
objective evaluation of the actual test result. This necessary testing information is obtained from
the corresponding, predefined definition or specification. A software specification document
must identify what, when, how, why, etc., is to be achieved with an engineering (i.e., measurable
or objectively verifiable) level of detail in order for it to be confirmed through testing. The real

effort of effective software testing lies in the definition of what is to be tested rather than in the

performance of the test.

VI RN xT T AN —ACRARFRIL, TSN RTH D, ETIULFEEEOT X MEROFHI
ELTROLTEDDF—LRDFMTHD, ZOEERT A MERIZ, 5T 5, FAIOEROE D
FRENDR/ILZENTE D, Y7 MU =THEEIL, = v=7V 7 (WENRTES, b LIT%HE
FIZRERITE 2) FEML~L &I, I3, WO, ED X HIZ, Wh7RLHEB T, 72 8 THLT D D)
Z, TAMEZBLTHRTELXLIIC, FFELRITIRLRY, ANy 7 by =77 A MIFELT
AKRAHLDZ LT, TAIDONT =< ALV BT A NORHRIZRDLONEERTDHZ LITH
Do

A software testing process should be based on principles that foster effective examinations of a

software product. Applicable software testing tenets include:

V7 NU=T T AN R L, VT Ny =T RGOBRICESIEE LTS EEBIET A E VD
FHNCHK S REThH D, ZUTHY 7 MU T T A NDOERIIUTE2ET

- The expected test outcome is predefined;

- A good test case has a high probability of exposing an error;
- A successful test is one that finds an error;

- There is independence from coding;

- Both application (user) and software (programming) expertise are employed;

- Testers use different tools from coders;

- Examining only the usual case is insufficient;

45

- Test documentation permits its reuse and an independent confirmation of the pass/fail status of a

test outcome during subsequent review.

o THISNDT A MERNVERINTND

o BWTARMNr—AX@mWERTZ I —% AT

o MITHTANEIZ, =ZT7—%HATHLDOTHD

o I—FT 4T MMBMNLTWND

o TV r—vay (=W Ly T hu=T (FulIIv7) OEMENRSELTND

o TARAE—FTa—F—LERLY—NVEHENTS

o WHIDT—ADHERET HIETTIEFEAT+S5THD

o TARMDXENTIE, TR PLEOHFME, KRITKES L E 2D, 7 A MERD B/ EH
ZMN L THER T 52 LN TED

Once the prerequisite tasks (e.g., code inspection) have been successfully completed, software
testing begins. It starts with unit level testing and concludes with system level testing. There
may be a distinct integration level of testing. A software product should be challenged with test
cases based on its internal structure and with test cases based on its external specification. These

tests should provide a thorough and rigorous examination of the software product's compliance

with its functional, performance, and interface definitions and requirements.

WEFMECH L L A7 (B 22— Fid) BRBICERE LIS, Y7 MU =TT A MMMKGEDL, =
=y P LT A MIREY |, VAT LLALT A NTERT D, MERT A MLV OA T T L—
varPborEEbH D, V7 b =T RnE, WEORIE &AM ARE %6wt%xh#~x%
b LI, HEICHNONLORETHD, TAHT A ME, S%Y 7 o =T REE, T —~
VABIOA v H =T 2 ADEREA VX — T 2 — RAFREETFLTCND L%, (2% LT
AT 2 RE DO TRITNITR B0,

Code-based testing is also known as structural testing or "white-box" testing. It identifies test
cases based on knowledge obtained from the source code, detailed design specification, and other
development documents. These test cases challenge the control decisions made by the program;
and the program's data structures including configuration tables. ~Structural testing can identify

"dead" code that is never executed when the program is run. Structural testing is accomplished

primarily with unit (module) level testing, but can be extended to other levels of software testing.

a— RR—=2D7 A ME, BENT A M LL “RUA MRy I R” TR MELTHLNTWD,
ZIT AN —RA% Y —Ra3— R, FMRsEHERE. T OMBATREIIEN O/ 6 5 M &SV T
BETLLDOTHD, ZNHT A Mr—RAL, 07T ML LHEORESLA T4 7 b—va T
—TIMIEEND T 0T T LDOT —IEREBEICHRD b DO TH D, WENT A MIT n 7T AEH)
RFICFEITARATREZR “dead” =2 — &R T 5 2 & HkD, MENT A MIFEIC2=y F (E¥V=2—
W) LRLT AR Lo TRLETONLN, RRDV-INVOY T by =TT A MUEETS2ZE 60
HETH D,

46

The level of structural testing can be evaluated using metrics that are designed to show what
percentage of the software structure has been evaluated during structural testing. These metrics
are typically referred to as “coverage” and are a measure of completeness with respect to test
selection criteria. The amount of structural coverage should be commensurate with the level of
risk posed by the software. Use of the term “coverage” usually means 100% coverage. For
example, if a testing program has achieved “statement coverage,” it means that 100% of the
statements in the software have been executed at least once. Common structural coverage

metrics include:

HER T A O L~ybi, #ENT 2 ORI Y 7 b o = THEERNMT S—t v Nl SN e g R
FOtE SN A M) v 7 22 HWTEHITE 5, 26 A MY w7 ZFa@E “O Ly 2”7 LIET
. 7T A MERRFCET 2 EMEORETH D, MENRAI ALYy VOREIIE, Y7 by =TI2&
STHIERZIEIND Y AT LYV LB LR T U B0, “O Ly Ln) HEEE AT 5
B BHE 100% I N—=SNTND LWV BRIZARD, BIZIEX TA NI 7T 0508 “Z7—FA b -
HRL Y “é:i%bf:kb\ﬁ ZEE, VT MU =TD100% D AT — KA MR RIKR—ENTFEITI N
ZEHRT, BEOMERN ANy AN v 7 I N 2T T

- Statement Coverage — This criteria requires sufficient test cases for each program statement to be

executed at least once; however, its achievement is insufficient to provide confidence in a software

product's behavior.

o Statement Coverage - Z DRMEDERTHDIT, 70T LAT— A M0, HIETH—[E
FITENDZ BB TT AN —ATHS, LL, V7 My =T /EOEEOHRIZE
WL, RLUTH TR,

*Decision (Branch) Coverage — This criteria requires sufficient test cases for each program
decision or branch to be executed so that each possible outcome occurs at least once. It is
considered to be a minimum level of coverage for most software products, but decision coverage

alone is insufficient for high-integrity applications.

e Decision (Branch) Coverage - Z DRIENERTHDIL, 70227 7 LOHED L 137 A 5
T, T ORRDPHFIETE —FNTELDZ 2R TT AN —ATHDH, KEHD
7 b = T REBITERNREO LA UE I N—E TV D & B 508, decision coverage 721
TIHHRAEDOENT 7Y r— 3 Uk L TR0 b 0 Th 5,

- Condition Coverage — This criteria requires sufficient test cases for each condition in a program

decision to take on all possible outcomes at least once. It differs from branch coverage only

when multiple conditions must be evaluated to reach a decision.

47

e Condition Coverage - Z DGRV ERT 20I1%, FHRMENT 07T LOHEOEIC, THISND
FERTRTCERIETH HNIELD L 2HRTTT AN —AThHD, REEZ NI, EHo
SR L7221 AU 72 5 WIRFIZER U | branch coverage & #7220 D Th 5,

- Multi-Condition Coverage — This criteria requires sufficient test cases to exercise all possible

combinations of conditions in a program decision.

o Multi-Condition Coverage - Z DN ERT HD1X, 7'v 7T LOHEITEWNT, AlRetED &
LHEMOMBEGOET X TRFEITINDLZEHRIETT AN —ATH D,

*Loop Coverage — This criteria requires sufficient test cases for all program loops to be executed
for zero, one, two, and many iterations covering initialization, typical running and termination

(boundary) conditions.

e Loop Coverage - Z DFEMNERT HDI1%, P18, @FEBEH), & T ER) FMHEE20-—75
BTV TTEN—T050, 1, 2B, TLTEORELTRITSNDI I LERTTT AN r—
AT 5D,

-Path Coverage — This criteria requires sufficient test cases for each feasible path, basis path, etc.,
from start to exit of a defined program segment, to be executed at least once. Because of the very
large number of possible paths through a software program, path coverage is generally not
achievable. The amount of path coverage is normally established based on the risk or criticality

of the software under test.

e Path Coverage - ZDFRMENERT 5D, ERINTZT BT TLET AL FDAZ— Fbik
DY ET, WHIRAR, R=V ZANRZERRIETS ~FFETSND L 2RTT AR r—2R
Thod, Y7 =77 mr T 5%@ L TRIREMED & 5 /X ATIER I KB I 2 D720,
path coverage | ASKIEN AR FRETH 5, path coverage DFITEH ., T A MDY 7 N7 =7 D
A7 % L<ITERMEICES LT 5,

+ Data Flow Coverage — This criteria requires sufficient test cases for each feasible data flow to

be executed at least once. A number of data flow testing strategies are available.

e Data Flow Coverage - Z DN ERT HDIL, AIEERET — ¥ 70 —PRRIETH —EFEITI N
HIEEHRETT AN —ATHD, HIMOT—4 70 —7 2 FHEBFATRETSH 5,

Definition-based or specification-based testing is also known as functional testing or "black-box"
testing. It identifies test cases based on the definition of what the software product (whether it be a
unit (module) or a complete program) is intended to do. These test cases challenge the intended
use or functionality of a program, and the program's internal and external interfaces. Functional

testing can be applied at all levels of software testing, from unit to system level testing.

ERRN—2AS LUIMRRER—ZADT A ME, BET A MO LUL “TI v IRy 72" TAREL

48

THLATND, ZhiL, Y7 hy=T8E (2=y b (EVa—1) ThoTh, TRATHT T A
ThHo>Th) BHLEBEOERICESNET A Py —2THE Z LAHRT 5 bOTHB, ZhbT
A2 M=%, HEHR@EST 0 7T AR, T e 77 LONHBIUONA 4 —T = — A% T A T
HHDThD, WEINT A ML, 2=y FRBYATALSXATAMETD, Y7 bv=T 7 A MOA
LAY RB W CHEHA S D,

The following types of functional software testing involve generally increasing levels of effort:
LFDY 7 by =T OEERNT A DX A 71E, — RIS IO L~V E ERSED 2 LITRD,

*Normal Case — Testing with usual inputs is necessary. However, testing a software product
only with expected, valid inputs does not thoroughly test that software product. By itself, normal
case testing cannot provide sufficient confidence in the dependability of the software product.

e Normal Case - WH DA LD T A RBRE, LL, TRITEHDRANIRELTY 7k
VxTWmET ARSI L, VT MU TRBEERIIT A M TSI LTy, Th
BT, @BEOr—27 A2 MIY 7 U =7 ®RGOMSMEICBET 2 EL, oI 2%
ZLiFTERY,

- Output Forcing — Choosing test inputs to ensure that selected (or all) software outputs are
generated by testing.

e Output Forcing - #E L7z (b LITEHD) Y7 My =THAWNT A FTERINTEZ L &
FIZT D720, T A MAT)Z IR

Robustness — Software testing should demonstrate that a software product behaves correctly
when given unexpected, invalid inputs. Methods for identifying a sufficient set of such test cases
include Equivalence Class Partitioning, Boundary Value Analysis, and Special Case Identification
(Error Guessing). While important and necessary, these techniques do not ensure that all of the
most appropriate challenges to a software product have been identified for testing.
e Robustness - ¥ 7 hU =77 A MTlE, THILRW, AITRWANEZEZX DILIZEE, Y7 b
U T RENIERICEET S Z L 2EREL R TN R, ZOXSRT A M r—RITAS
bLWe ENDHIEIC, FHEER D, SEREsT, F50lr —2fEE (=7 —HElD 238 %,
HEDPOBETHLOIL, ZhET 7=y 7id, V7 U7 BRI 5 il 72 B A 0 4
TH, TAMEBREND ZEERFET DB D TIERLY,

- Combinations of Inputs — The functional testing methods identified above all emphasize
individual or single test inputs. Most software products operate with multiple inputs under their
conditions of use. Thorough software product testing should consider the combinations of inputs
a software unit or system may encounter during operation. Error guessing can be extended to
identify combinations of inputs, but it is an ad hoc technique. Cause-effect graphing is one

functional software testing technique that systematically identifies combinations of inputs to a

49

software product for inclusion in test cases.

o Combinations of Inputs - 30 THAE SNVT-BERERY T A b B, A DH L WIT 7T A
FADNZERT D, KEaDY 7 bU =7 8/inE, ORI TERD A 2 0
95, BBV 7 M2 TRBETA NI, V7 b7 2=y MOV AT ANKEIREICE
THAREMEDH H AN OMAETEZBE LR ITILR 6720, =7 —HEIZ, A OMAEE Ok
FBICHEIRT D 2 LN TELR, ZHTREDT 7 =y 7 Th b, RKEDRORAIL, 7
AN —=ACEENDY T MY =TRSO AT OMEE ZRRINTREST D, e Y 7 b
V2T TANT V=7 Thb,

Functional and structural software test case identification techniques provide specific inputs for
testing, rather than random test inputs. One weakness of these techniques is the difficulty in
linking structural and functional test completion criteria to a software product's reliability.
Advanced software testing methods, such as statistical testing, can be employed to provide further
assurance that a software product is dependable. Statistical testing uses randomly generated test
data from defined distributions based on an operational profile (e.g., expected use, hazardous use,
or malicious use of the software product). Large amounts of test data are generated and can be
targeted to cover particular areas or concerns, providing an increased possibility of identifying
individual and multiple rare operating conditions that were not anticipated by either the software
product's designers or its testers. Statistical testing also provides high structural coverage. It

does require a stable software product. Thus, structural and functional testing are prerequisites

for statistical testing of a software product.

BERERY, BEIENY 7 N =T T A N —ADRET 7 = 7%, TV FX LT A NANTIEHRL, 7
A MNIZFFED AN ZRMT 2, 2B T 7 = 7 ORI, MEN, HIENT X MET&ME Y 7 b
U TR OGHEMECY V7T ERREER S ETH D, HERT AN L IICEEDY 7 Y x
TTARNGEZ, Y7 b2 TRENMEETE D LW IRIEE I T A 2DICHV SN D, T A
FCIE, BRI 740 (B V7 by =T REOTRIND ik, LR HER, BEEH LR
BRI UIEERBEDMND T HA NER LT A NT =2 2T D, REOT A NTF—2 PNERKRS
. Y7 Ry = TRGOBRHED LT AY =BT TE 0B L IXEEORRBIES % FF
ETHAREMEZ O L TV 2 & T, ZRDIERED T, BMEFEHEIN—TIHX—F v NEd,
EHNT A MIETEEN AN L Yy VEFEO D, FHFERELTLY 7 by =7 /-G ELEETHHOT
2R, ZOX D ISR, HEEERIT A MX Y 7 b = TR ORFT A S OMESKETH B,

Another aspect of software testing is the testing of software changes. Changes occur frequently
during software development. These changes are the result of 1) debugging that finds an error
and it is corrected, 2) new or changed requirements ("requirements creep"), and 3) modified
designs as more effective or efficient implementations are found. Once a software product has

been baselined (approved), any change to that product should have its own “mini life cycle,”

including testing. Testing of a changed software product requires additional effort. Not only

50

should it demonstrate that the change was implemented correctly, testing should also demonstrate
that the change did not adversely impact other parts of the software product. Regression analysis
and testing are employed to provide assurance that a change has not created problems elsewhere in
the software product. Regression analysis is the determination of the impact of a change based
on review of the relevant documentation (e.g., software requirements specification, software
design specification, source code, test plans, test cases, test scripts, etc.) in order to identify the
necessary regression tests to be run. Regression testing is the rerunning of test cases that a
program has previously executed correctly and comparing the current result to the previous result
in order to detect unintended effects of a software change. Regression analysis and regression
testing should also be employed when using integration methods to build a software product to
ensure that newly integrated modules do not adversely impact the operation of previously

integrated modules.

V7 MNU 2T TARNDORMOERIL, Y7 My =T EEIXNTLHTANTCHD, BEITY 7 My =T
FEHIFNCHEICE Z 5, Zh b BRI

) =7 —%%AL, BEShEEEDT Ny

2) il E I3 H S REFIE ("requirements creep")

3) X0 —ERRA, BRI GIEN RO RETE AT

REDHRTHD, V7 by T RGN —ERELGER) SN D &, Fo | ﬁ#émm@éwﬁ
X, TANEELREED “R=F9A4 7V A7V ZROLOTHD, BEHEINEZY 7 b =T
X%w\Em%&ﬁéﬁﬁgkﬁéo%E#Eﬁ_ﬁbﬂt_k%ﬁﬁﬁétﬁfﬁ<\%E_ib/
7 b= TR OIEDDO RN CERELE 5 2 o2 2 L b B CGEH LTS 5720, LY
Lyva g7 A NI, BRICEKV Y 7 b =T8O L ZICHRENE L)oo 2 & RS
HIeDIATOND, VI Ly Ta UaiTE, FITICRERLV I Ly a T A NERET 72, B
XE W YT Ny TENRMAERE, VT MY o TEREHMEEE, Y —RX2— K, T A NHE, TA NS
— A, TAMRZ VT ME) OVE 2RSS ERDORBLZRETHZLTHL, VIbyirarsTR
ME, v 77 ABRLENCEFICEIT LIET A N —2A0H/IATTHY, V7 by =7 EHOEM S
TWRWEEZ R T 272012, BUROREREZLRIOR R KT 20D TH D, L7 Ly va ol
ETARNI, AT 7L —va v FEEAWTY 7 b= TR EBETIEMCEA L, LIRSS
NTEY 2a— A RLUENTBEASNIZEY 2 — /IR L TEEEL B X RN L2 RFETXETH D,

In order to provide a thorough and rigorous examination of a software product, development

testing is typically organized into levels. As an example, a software product's testing can be

organized into unit, integration, and system levels of testing.

V7 by TRIEORES, BERBREEZRET I, BERT X MI@EE LT s, iz
. V7 hu T OT A ML, 2=y bLUL ST T L —3 gL VAT ALAYLTT
A NPERFHT BTV D,

1)Unit (module or component) level testing focuses on the early examination of sub-program

51

functionality and ensures that functionality not visible at the system level is examined by testing.
Unit testing ensures that quality software units are furnished for integration into the finished

software product.

) 2=v b (BEVa—, avFR—xrF) LRLTFR ML, 77027 T AEEO RHIRAEIC
BREHT, VAT AL IVTRL ZEDTEROKHEST A P TRESND 2 & ZRAET
5oJ:VFTXFi\ﬁﬁLkV7%?:7%mm®ﬁ KL, BREOY T R T
=y ;M- TWD Z & ZIRFET D,

2)Integration level testing focuses on the transfer of data and control across a program's internal
and external interfaces. External interfaces are those with other software (including operating

system software), system hardware, and the users and can be described as communications links.

2) AT T L—varlb-ULT A NI, Tl T hONE, A H—T 2= ANDT — X
ITEEHICEREHTDH, A v F—T == F, OV 7 hy =7 (FXL—va X
FAYT NI 2T EE), VAT AN—RY 2T 2P DAL H—T 2 —ATHY, a3
2= —ar s EbaAT L2 ENTE D,

3)System level testing demonstrates that all specified functionality exists and that the software
product is trustworthy. This testing verifies the as-built program's functionality and performance
with respect to the requirements for the software product as exhibited on the specified operating
platform(s). System level software testing addresses functional concerns and the following

elements of a device's software that are related to the intended use(s):

3) VAT ALULT A NI, FRE LEEHENFEL, Y7 My 2T REBEETE2HDOTH
HZLEEFAHTHHLOTHD, ZOT A ML, V7 by =T R 5 EREIEICR T 5
TEINTT 0T T LERRENT 4 —~ VAN, FEDAXL—2a 7Ty M7 —5 RICH
NAZLERITAEDTHD, VATALULY 7 N7 =75 A M. BERER 7R A S IE
L UTICRS BRI LEZARICET 2T AL AY 7 Y =27 OLLFOERHEICH LT HHDOTH
%o

- Performance issues (e.g., response times, reliability measurements);
Responses to stress conditions, e.g., behavior under maximum load, continuous use;
*Operation of internal and external security features;
- Effectiveness of recovery procedures, including disaster recovery;
Usability;
- Compatibility with other software products;
Behavior in each of the defined hardware configurations; and

- Accuracy of documentation.

o NI x—<RTHTLHRME (fﬁ. SRR, REPEORITERR)
o A DL RIRBEA~DOXS (B : HREFOAS T OBME, #efti)

52

o W, X2 YT 4 RIROARL—a v

o KFEMEIHRE, HIBFIEFEOZR

o HHME

o MDY T h =7 B & O H M

o XEFRFEHAN—RT =T a7 47— arOfE
o SUEALOIEHESE

Control measures (e.g., a traceability analysis) should be used to ensure that the intended coverage

is achieved.
HEHE (F: FL—EV T 2500 ITBER LD ALy URERINZZ & 2EHT 572017
ns,

System level testing also exhibits the software product's behavior in the intended operating
environment. The location of such testing is dependent upon the software developer's ability to
produce the target operating environment(s). Depending upon the circumstances, simulation
and/or testing at (potential) customer locations may be utilized. Test plans should identify the
controls needed to ensure that the intended coverage is achieved and that proper documentation is
prepared when planned system level testing is conducted at sites not directly controlled by the
software developer. Also, for a software product that is a medical device or a component of a
medical device that is to be used on humans prior to FDA clearance, testing involving human
subjects may require an Investigational Device Exemption (IDE) or Institutional Review Board
(IRB) approval.

VAT ALRLT A MY, BRILIEANL—va VBRETOY 7 by =T BEOEEEZ R THOTH
Do TOXIBRTAMORT =V a i, BIREETOANL—Ya VREEZEX LY T U= TS
DRENNAEAFT 2o IRMRE TR, (BER) BEORT—2a 2T, vYIalb—varBROER
I7 A P&EATD ZEPRLDIEAH D, T A REHEITIEE, FHESNZ Y AT ALYV T A MRSEEY 7 b
V=T RABEOEH LAWK TEITSNLLE, BRLIED AL y U ERS L, WY 72 3CEDER
SNTWDZEERIET DO T ay ba— L FRE LT U o720, F72, FDA #2120k
Mo T ARICHW S D BRSSO ERSSRO 2 R—% o b5 Y 7 b= 7RISR LT,
ANHZxt5: & 357 A M, Investigational Device Exemption (IDE) &% 7213 Institutional Review Board
(IRB)D KGR EE L T2 DGR D D

Test procedures, test data, and test results should be documented in a manner permitting objective
pass/fail decisions to be reached. They should also be suitable for review and objective decision
making subsequent to running the test, and they should be suitable for use in any subsequent
regression testing. Errors detected during testing should be logged, classified, reviewed, and

resolved prior to release of the software. Software error data that is collected and analyzed

during a development life cycle may be used to determine the suitability of the software product

53

for release for commercial distribution. Test reports should comply with the requirements of the
corresponding test plans.

TANFIE, 7ANTF—%, 7TARMERIL, 8 ’ﬂLA%/IA%@ﬁ%Eﬁ?Tﬁéct O XEhSH
Do Flo, LEaRT A MOFITRICRINDIEBNRIREICHEL TR, #OL 7 Lbyia T A b
ZHHE L CWRITFIUER bRV, TA MICHERENZZT—Ii%, Y7 hv=T7 0OV J—RITHELH,
27 S LB RIESNRTNER SR, BT A 7 A 7 A BIMICEIR St s iy 7
Ny =27 DOxT7—F =2 %, V7 b= 7 ®BEBSTHRIZETTY U —RZ# LT D 0ERET DD
HAuwboisd, 72 MREITHST 27 A FEFREOERFHIZEA L2THITR 50,

Software products that perform useful functions in medical devices or their production are often
complex. Software testing tools are frequently used to ensure consistency, thoroughness, and
efficiency in the testing of such software products and to fulfill the requirements of the planned
testing activities. These tools may include supporting software built in-house to facilitate unit
(module) testing and subsequent integration testing (e.g., drivers and stubs) as well as
commercial software testing tools. Such tools should have a degree of quality no less than the
software product they are used to develop. Appropriate documentation providing evidence of the

validation of these software tools for their intended use should be maintained (see section 6 of this

guidance).

PR L <12 oSS ICEM 2 HiEEZ b oY 7 by =2 TR, W TWEMTH S, Y7 b
2T TARY—=E, ZOXIRY 7 My =TREOT X MIBWT, —EE, ek, AOWEE R
L., BB SN2 7 A MNEBINOERFHZW 23720, HBEICHWLND, Zhb0Yy —iaid, ik
SNTVWLYTZ by =TT ARY—/VERBRIZ, 2=y MNEYa2—)T A M EGIEHEtTbh LA~
T —varT AN, RIAN—BLURARAFT) 2 RETHHNTHEEINT AR Y 7 by =7
EEND, TOWVSTY—WMIRIEASNTZY 7 b =27 Y — VZRIZEDOME R 2 TR b7
W, THOEDY 7 R =7 — A OER LT HBICR LT F— g v 2R D U 7 SUE A HERS
SITWRITIURR BIRWNR T A X 2 A D section 6 ZZ D Z L)

Typical Tasks — Testing by the Software Developer
- Test Planning

- Structural Test Case Identification

Functional Test Case Identification

- Traceability Analysis - Testing

—Unit (Module) Tests to Detailed Design
—Integration Tests to High Level Design

—System Tests to Software Requirements

- Unit (Module) Test Execution

- Integration Test Execution

- Functional Test Execution

54

- System Test Execution

- Acceptance Test Execution

- Test Results Evaluation

- Error Evaluation/Resolution
-Final Test Report

—WRE)E AT - VT MU TBRREFICLDT AR

7 A MEHE

HEER T A b — ARRFE
BREERYT A b — ARFE
PL—H%EVT 45 —T A b

—az=y b (EVa—V) T AL EMKE
AT T L= a T A RNNLELVALVERRE
— VAT AT AN YT MU =T ER
2=y h (EVa—N) TANET

AT T V—a T A NELT

HERERY T A b AT

VAT LT A NELT

ZANT A NFAT

T A b e A

T 7 — /AR

BALHIT A b

5.2.6. User Site Testing =—H#IZL5T X b

Testing at the user site is an essential part of software validation.

The Quality System regulation

requires installation and inspection procedures (including testing where appropriate) as well as

documentation of inspection and testing to demonstrate proper installation. (See 21 CFR

§820.170.) Likewise, manufacturing equipment must meet specified requirements, and
automated systems must be validated for their intended use. (See 21 CFR §820.70(g) and 21 CFR
§820.70(1) respectively.)

2—PIZLDETARMNI, Y7 MU 2T AR TF—2 g VIBWTEETHS, WEVAT LA,
Cl7pA VA M=V EFERT D720 0K, 7 A MOXLEF T TR, A VA M=V EREBEOTFIE (HEY)

R AT A b ET) b4EE TS, (21 CFR §820.170.2 M)

DX HIT, HEERORLEIT,

fRESNEEREZATZ L, HEMEY AT A3, ZOEKT 2RI LAY 7F— Sl b2z

VY, (21 CFR §820.70(g) & 21 CFR §820.70(i) %4 % &)

Terminology regarding user site testing can be confusing. Terms such as beta test, site

validation, user acceptance test, installation verification, and installation testing have all been used

55

to describe user site testing. For purposes of this guidance, the term “user site testing”
encompasses all of these and any other testing that takes place outside of the developer’s
controlled environment. This testing should take place at a user's site with the actual hardware
and software that will be part of the installed system configuration. The testing is accomplished
through either actual or simulated use of the software being tested within the context in which it is
intended to function.

2—YH A b7 A MIBET L EMAHGEL. 220201V ThSL, X—FT AR, YA FNYFT—
vay, a—YPZATAN A UAN L=V a R T4 r—vary, A A M—AT AN EDORGE
X, TRTC2—HH A F TR NEBRRDBIZHWOND, KTAX L AOHKE LTE, “2—F A
F7A R LW HERIL, 2607 A N ERBEDOEHREDIN CITONTEH B9 HT A N ET T
WETHHOTHD, ZOTANME, 2—¥H A NT, A VAN A SNV RAT LA T4 T L—
3D ERDEEDONN— R 2T V7 =27 ZHONTUTIRETH S, 7 A ME, BT 58
RROFMHNTT A NEND Y 7 by =7 2 FEEOHHAS LUFERAEZ I 2L — ML TETT 5,

Guidance contained here is general in nature and is applicable to any user site testing. However,
in some areas (e.g., blood establishment systems) there may be specific site validation issues that
need to be considered in the planning of user site testing. Test planners should check with the

FDA Center(s) with the corresponding product jurisdiction to determine whether there are any

additional regulatory requirements for user site testing.

IV IAEN TN DI A XU AIAREREET, Wb a—HY A M7 2 MIEHAT 50
Thbd, LrL, HDEHZITBNTL (fl - MEHEE S 27 2), 2—FF A R T A MO E LTH
BENDIMBEOH D, FEOYA AR F— a VERSH D, T A MatEiFIL, 2—PH A T A b
[ZBILCL BMPELHIEER 23 e D E D I E RIS 5728, FDA O#%4 7 2 ML EEE OB I WA D
HETHRETHD,

User site testing should follow a pre-defined written plan with a formal summary of testing and a

record of formal acceptance. Documented evidence of all testing procedures, test input data, and

test results should be retained.

=W A FTARTIE, TAMOERLY <) — L EXBRZAGTGHFREE-T-, FHIICEEINT-E
HOFHEIZWE DY, 27 A NFIE, T A MATNT—%, T A MEROSLEIZ X DFHLUIRT L2 T T2
SR AN

There should be evidence that hardware and software are installed and configured as specified.
Measures should ensure that all system components are exercised during the testing and that the
versions of these components are those specified. The testing plan should specify testing
throughout the full range of operating conditions and should specify continuation for a sufficient
time to allow the system to encounter a wide spectrum of conditions and events in an effort to

detect any latent faults that are not apparent during more normal activities.

56

N=RU =T Y7 =T, HESNTEEIICA VA M=), BE SN 72 T AT 7 & 72
W, FTOFERIL, BYATLAIVER—XR MR TAMORKRTEEHL, b3 R—3r FDONR—T 3
VNIRESINTZ LD TH D Z L ZRIAELRITNIER LRV, 7T X FEHEITIL, AL —T g ROE
HPHICDI D7 A MEFRE L, @ OEERITITMIC R b2 WIBTER XM R T 21581 5 S
FXFERRMEA R MV AT L BB ST 5720, 8@t Lzt 2 E L bk
[

Some of the evaluations that have been performed earlier by the software developer at the
developer's site should be repeated at the site of actual use. These may include tests for a high
volume of data, heavy loads or stresses, security, fault testing (avoidance, detection, tolerance, and
recovery), error messages, and implementation of safety requirements. The developer may be

able to furnish the user with some of the test data sets to be used for this purpose.

B BIRE YA P THBEEICLVITbR ORI, EHYA FTHETOINETH D, =
nNoH7A ML, BBEEDOT —¥, KEOR—RKARNVA, BX2 U7 0, Ka7 A~ (B, KR,
Mk, [EfE) =7 —2 v —v BREROFEE ETe, HIEEIL. ZOHBRTHWST A M —4 &
v Mo —PICRMET 52 ENTE D,

In addition to an evaluation of the system's ability to properly perform its intended functions, there
should be an evaluation of the ability of the users of the system to understand and correctly

interface with it. Operators should be able to perform the intended functions and respond in an

appropriate and timely manner to all alarms, warnings, and error messages.

BT AREZEUNCEITT DU AT AESFHMEICINZ, VAT LAZHEL, EMECA X —T =—
A TCEXLa—WRENIMELVNETH L, XL —F—jF, BEXTIHEELZETL, H5057 7 —L4,
L 25— Ry — Ik LTINS Z A LY — XS TE ATz e,

During user site testing, records should be maintained of both proper system performance and any
system failures that are encountered. The revision of the system to compensate for faults

detected during this user site testing should follow the same procedures and controls as for any

other software change.

Z— YA b T A N OBMIE, WS AT AMEREL B L= Y AT ARMO TR E T 5,
L= WA TR NIRICRR SR ER S 7200 AT ASETE, oY 7 by = 7 EE &k
DOFIEE 2 b r— i,

The developers of the software may or may not be involved in the user site testing. If the
developers are involved, they may seamlessly carry over to the user's site the last portions of
design-level systems testing. If the developers are not involved, it is all the more important that

the user have persons who understand the importance of careful test planning, the definition of

expected test results, and the recording of all test outputs.

57

V7 RN =T OREFIL, 22—V A T A MIBMTA2HEEbHNE, BMLARWEELH L,
FBENSIMLUTEBA T, 2—PICEDRH LV AT AT A MO 2wl s < 0 iK4 ml4E
RS D, ZMURWEAIL, 22— RERT A MNtE OB, THT57 2 MEREE, T
DT A M OREREIFET DANDND ZENRHEEL D,

Typical Tasks — User Site Testing
- Acceptance Test Execution

- Test Results Evaluation

- Error Evaluation/Resolution
-Final Test Report

S A —a =P A F T A b
o AT ANFEAT
o T A MERFHA
o =T —aFAHi/fER
o BT A MESE

5.2.7. Maintenance and Software Changes A7}V RE V7 N =2TER

As applied to software, the term maintenance does not mean the same as when applied to
hardware. The operational maintenance of hardware and software are different because their
failure/error mechanisms are different. Hardware maintenance typically includes preventive
hardware maintenance actions, component replacement, and corrective changes. Software

maintenance includes corrective, perfective, and adaptive maintenance but does not include

preventive maintenance actions or software component replacement.

V7 M2 TICHEHAINASGSE, AT T UALE, N R T ICEHASND b O LIRS TR
Wy W—=RDU T eV TR NT2TDFAR—2 g AT H U AR ZHE KRR =T7—0 A =
REWRIRDNETHD, N— R T =T DA TF U AT, FPHON— R =T AT R
TrYary, aAYiR—3x "N BIEEENEGEND, YT MU T AT F AT, Bk, B
A, WU AT FUREGLR, THOA LT T AMEESY 7 bU =T Oary R—xxr NRHITE
EZAAAN

Changes made to correct errors and faults in the software are corrective maintenance. Changes
made to the software to improve the performance, maintainability, or other attributes of the
software system are perfective maintenance. Software changes to make the software system

usable in a changed environment are adaptive maintenance.

VTR 2T DTTF—RRMEEIET HTDDERIL, RIEALT TV ATHD, T F—< K|
Ratt, 723V 7 2T VAT ADEDMOBHEDOWRET L1207 h T =TI ENDER
. BEIEA LT T A DTS, BESNEBEICTY 7 Ny =7 AT L ERTAREICT 2V 7
v TEEE, NESEA LTS A THh D,

58

When changes are made to a software system, either during initial development or during post
release maintenance, sufficient regression analysis and testing should be conducted to demonstrate

that portions of the software not involved in the change were not adversely impacted. This is in

addition to testing that evaluates the correctness of the implemented change(s).

VI Nz T VAT APREL I & &, HIHBERHE G LTV UV —A X T F U RO,
V7 2T OEFIZEE L TWRWESICHEREN 2N A2 T 5720, oL 7Ly vay
SHFET A RNEITH . ZHUTFAT LB HE O EMIEZ M+ 2800725 A R Th 5.

The specific validation effort necessary for each software change is determined by the type of
change, the development products affected, and the impact of those products on the operation of
the software. Careful and complete documentation of the design structure and interrelationships of
various modules, interfaces, etc., can limit the validation effort needed when a change is made.
The level of effort needed to fully validate a change is also dependent upon the degree to which
validation of the original software was documented and archived. For example, test
documentation, test cases, and results of previous verification and validation testing need to be
archived if they are to be available for performing subsequent regression testing. Failure to

archive this information for later use can significantly increase the level of effort and expense of

revalidating the software after a change is made.

KT N 2T ERICHEREEDON) F—aid, BEOEA T, ARG ~DOHE VT
= T BB OB A~DOEEBIC L WVIRET S, ZHEREY 2 —L AV F—7 = — A EOHFEE LA
BIfR DSR2 CEIL, BHINTBE, RELEININVT—va vy ORABERBT LN TEL, &
I LB T = TR BD LYWL, AV TN T =T DEONRY T — g URLE
b, T—HA T ENTZDOEEWRET 5, FlziE, 7ARNLE, 72 Nr—A, BRI 7 47—
arfEE, N)F—arTAMI, bLEBEOL Ly a T A MIFIHATESL L) THIIE, T
—HA T ENDIMENDD, ZOERET — AT TEXRWVWEAE, BEHDOY 7 b 2T OFNY T —
v a Y ORBEDO LUV EFEH TSRS 57259,

in addition to software verification and validation tasks that are part of the standard software

development process, the following additional maintenance tasks should be addressed:

FEUEY 7 h =2 TR T o AO—EThHD, Y7 b7 RN T =g 90N F—2 g ZA7
Wz, UFOA T F U AE AT bbb :

- Software Validation Plan Revision - For software that was previously validated, the existing
software validation plan should be revised to support the validation of the revised software. If no
previous software validation plan exists, such a plan should be established to support the
validation of the revised software.

59

e Software Validation Plan Revision - LLRij/NY 75— h &7z Y 7 b = 7IZxt LTIk, GT e
VI =T ON)TF—=va a2 R— T 5RT, BUTOY 7 by =7 AN F—a Uik
BZSGETT 2, Y7 U =T AT =2 g UEHEOFIBIREE LRWIEE, 20X 9 Rtk
LTSNV 7 b =T ONYTF—2arz2dR—bhTE5 L EREIND,

- Anomaly Evaluation — Software organizations frequently maintain documentation, such as
software problem reports that describe software anomalies discovered and the specific corrective
action taken to fix each anomaly. Too often, however, mistakes are repeated because software
developers do not take the next step to determine the root causes of problems and make the
process and procedural changes needed to avoid recurrence of the problem. Software anomalies
should be evaluated in terms of their severity and their effects on system operation and safety, but
they should also be treated as symptoms of process deficiencies in the quality system. A root
cause analysis of anomalies can identify specific quality system deficiencies. Where trends are
identified (e.g., recurrence of similar software anomalies), appropriate corrective and preventive
actions must be implemented and documented to avoid further recurrence of similar quality
problems. (See 21 CFR 820.100.)

e Anomaly Evaluation - ¥ 7 b7 = 7L, HAINY 7 MU =T DR, HFRE 2ELE
FTARIKIGREZFLR LY 7 by = 7RG EO L 512, HBIIXEFELZRET 5, HET
ELOEN, IAFTBVIRSND, XY 7 MU = 7 BFEE DN E UTARIRZHET S
ROEEZHET, MEOHREZY STeOICHNER 7o ARLFHOEEZ LW DTH
o Y7 MU =T ORFIX, BRMEE VAT LA —1 g U~ORBEER XL EMEITS T
A SN2 _EER, FRFICRE Y AT ATE T v 2AOXMOER & L TRbh Tt
b, MAMRKSHIZEY . WEHY AT LAOXRMERETE 5, A2 E TEiT

B - kDY 7 b U =T REOBFRE) . SREROMERBEOBIEZP < L o, W REE
RRTRRHLE B, CEEND,

- Problem Identification and Resolution Tracking - All problems discovered during maintenance of
the software should be documented. The resolution of each problem should be tracked to ensure

it is fixed, for historical reference, and for trending.

e Problem Identification and Resolution Tracking - ¥ 7 bV =7 A 7T AHIHAINTZH D
DL, XE kS D, SRBEOMRIT, FENMEESHh, BEEHEHAAHRTE 589
W2, REL A TR,

Proposed Change Assessment - All proposed modifications, enhancements, or additions should
be assessed to determine the effect each change would have on the system. This information

should determine the extent to which verification and/or validation tasks need to be iterated.

60

e Proposed Change Assessment - fifd S/ T X TOEIE, ki KONBMEHEIT, FLEEN T
AT BCHZ DR BT 51O SNAXETH D, ZOFMT, KEDNMLERNY
T4 = arBIOERIIANY T =g X A7 O AR LT IE R 5720,

- Task Iteration - For approved software changes, all necessary verification and validation tasks
should be performed to ensure that planned changes are implemented correctly, all documentation

is complete and up to date, and no unacceptable changes have occurred in software performance.

o Task Iteration - KB EIN/=Y 7 hU =T OEE X, HFERR) T 4 r—var RN F—v3
VAR NEFITINT, FHEEOEFERNEFICETIN., 2 TOXE TR URIRT. V7
MY = THERRICEB W TZIT AL IV WEE N 2o 72 2 L R LTI 5720,

* Documentation Updating — Documentation should be carefully reviewed to determine which
documents have been impacted by a change. All approved documents (e.g., specifications, test
procedures, user manuals, etc.) that have been affected should be updated in accordance with
configuration management procedures. Specifications should be updated before any maintenance

and software changes are made.

e Documentation Updating - XEL, EOXLENEHLICL > TRELZZ T 0 ailET L4, &
BRS V2275, KBHEHTHLINRBELZ T 3CGET B ARRE 7 X M FRIEE, =
—YvmaTVE) ar7 4 =y a VERBFIEEIC LAWY v T — b Eanb, Hikk
FEIACTFoRL VT MU= TERUENCT v T — S D,

61

SECTION 6. VALIDATION OF AUTOMATED PROCESS EQUIPMENT AND QUALITY SYSTEM
SOFTWARE B&H{b7 ' mbvREBLHNEI AT LAY 7 M2 TONRYF— g

The Quality System regulation requires that “when computers or automated data processing
systems are used as part of production or the quality system, the [device] manufacturer shall
validate computer software for its intended use according to an established protocol.” (See 21 CFR

§820.70(1)). This has been a regulatory requirement of FDA’s medical device Good

Manufacturing Practice (GMP) regulations since 1978.

E AT ABANT, A= RHBET =X et R X T A0, Jih LATME S AT
LDO—HE LT éZPLZ) L&, (B WEENENL SN e ha— koS &x 20EKTHH
BCarvEa—FY 7 TN T — 95" ZEa0ELET5H, (21CFR §820.700)2H) i
31978 =, FDA ® medical device Good Manufacturing Practice (GMP) TOBHIERTH %,

In addition to the above validation requirement, computer systems that implement part of a device
manufacturer’s production processes or quality system (or that are used to create and maintain
records required by any other FDA regulation) are subject to the Electronic Records; Electronic
Signatures regulation. (See 21 CFR Part 11.) This regulation establishes additional security, data
integrity, and validation requirements when records are created or maintained electronically.
These additional Part 11 requirements should be carefully considered and included in system

requirements and software requirements for any automated record ‘keeping systems. System

validation and software validation should demonstrate that all Part 11 requirements have been met.

ERAYF—va VERICMA, MEEEES ORE T nE A b LMY AT A (10> FDA #
BB T BRREIER L, T DB SN REY AT L) AT YA b Ha L Ea—

FUAT KF, ARk, BTEAOBBIOEM &5 %, (See 21 CFR Part 11L.2M) Z OBIHIL, &L
BB TINMER D L B SHEBICHMEN 52X 2 U T 1, T—F A, NYF—va vk
EEDELOTHSD, LB Partl] BRIT, MEICESE L, AT L2FHT 5 ABILIEHOT
W, VAT RERRY T b Y = BLRICED D UER DD, YAFANYF—2ar kY7 by =T A
VT —3 3 % Partl] RN T RCZSNTWD Z & AZFEH Ladhida b,

Computers and automated equipment are used extensively throughout all aspects of medical
device design, laboratory testing and analysis, product inspection and acceptance, production and
process control, environmental controls, packaging, labeling, traceability, document control,

complaint management, and many other aspects of the quality system. Increasingly, automated

plant floor operations can involve extensive use of embedded systems in:

TV — O E I, EREAEEE. BB - b, BAERmA - A g - e R E
B, BEEHEH, Ny br—Y I, M—HE YT, CEEH, FIEEHE, TOMBE AT A
B4 2FEHDJAFHHIZB W THWORD, fRalc, BEMLT T h7a T A b—3 3 3, LNO#E
BWUCHAAENTZ VAT AETHZORPAZ AT TN 2 EMTES ¢

62

programmable logic controllers;

-digital function controllers;

- statistical process control;

-supervisory control and data acquisition;
-robotics;

- human-machine interfaces;

- input/output devices; and

*computer operating systems.

e PLC

o TULNKRET L fr—TF

o MEHTErEAZ F—F

o BEMIHIE & T — & Ik

o TRy RN

e ba—wrwi LA HE—T—R
o ANIMTITISA A

e ILEa—#O0S

Software tools are frequently used to design, build, and test the software that goes into an
automated medical device. Many other commercial software applications, such as word
processors, spreadsheets, databases, and flowcharting software are used to implement the quality

system. All of these applications are subject to the requirement for software validation, but the

validation approach used for each application can vary widely.

V7 Ny =T Y=k, BEMLEREESR AT Y T b = T OfkGH, R, 7 A M TTHEICHWS
nbd, V—R7atot, RKFEY 7N 74—, TJu—Fxr— VT =T REDEZL O
WY 7 v =777 r—rva i, MEVATLENMEHIND, 2T 7 r—3a 0T
X, Y7 ROz TN T =2 a VERORRERDN, KT TV r—ra il ngT aNY T —v g v
T —FIERES AR D,

Whether production or quality system software is developed in-house by the device manufacturer,
developed by a contractor, or purchased off-the-shelf, it should be developed using the basic
principles outlined elsewhere in this guidance. The device manufacturer has latitude and
flexibility in defining how validation of that software will be accomplished, but validation should
be a key consideration in deciding how and by whom the software will be developed or from

whom it will be purchased. The software developer defines a life cycle model. Validation is

typically supported by:

KRR E VAT LY T MU =T 3 oD A THGREREICL VAR S, FHRERICIVARES
e HLWNEAT « F - = LT THASNTELGAETHoTh, ATA X ATHH STV D IR
JFANC AW TRE SN D NE TH D, BGHAREILY 7 bv =7 RN F =2 a U OZRTHIEDERIZ

63

DWTIHRAEE L TR THLN, NV TF—vaid, Y7 ho=7TRnEnk o1z, 2L THIZE D
FESH, HENDBASNDNEREICBNTIL, FERBEFETHD, Y7 MU =THEEIX. 74
THA I NVETNVEERT D, N T —va VIR TOFEEN LY R — 22T 5

-verifications of the outputs from each stage of that software development life cycle; and
- checking for proper operation of the finished software in the device manufacturer’s intended use

environment.

o VI INYTHRTIA THATINDEARAT—NEDHETTORY 7 47— 3
o WY 7 hy=7 T, HEFOEXNT HMEHARREICEBWNTCOEEB#H T = v 7

6.1. HOW MUCH VALIDATION EVIDENCE IS NEEDED? Y ODREDNYF— gl BTV AM
WEED>?

The level of validation effort should be commensurate with the risk posed by the automated
operation. In addition to risk other factors, such as the complexity of the process software and the
degree to which the device manufacturer is dependent upon that automated process to produce a
safe and effective device, determine the nature and extent of testing needed as part of the
validation effort. Documented requirements and risk analysis of the automated process help to
define the scope of the evidence needed to show that the software is validated for its intended use.
For example, an automated milling machine may require very little testing if the device

manufacturer can show that the output of the operation is subsequently fully verified against the

specification before release. On the other hand, extensive testing may be needed for:

NYF—va MEEDOL-VT, BEMEEICLY 763N Y A7 LHIGT 5, TekRAY T LY
=T OEHEE L Vo T, VAT OMERICIN X, BETHN s ST 27200 HEET 71E X2
BERILEERE DR T HEAVEIANY T = a v o—fé LTURERT A NORE EHHEZRET 5,
HEML 7 m e AOCELOLEEE U R 7 58TE, V7 MU =7 RERT 2 HBBWTAY T — i
TWAHZEERTZET VARAEZERT HIEER LSO TH S, HlziX, BEMLY 74 ZIZBL
T, BmEEE DAL —2 g VO Y U —ZRIOAAREITK Lol SRt & 5BRRIE CTURES D
ZE R ARWT A NTHELOTH L, —J7, IRFHICED T A FOMEMIL, LLFO%ERD
HiLh

-a plant-wide electronic record and electronic signature system;
-an automated controller for a sterilization cycle; or

-automated test equipment used for inspection and acceptance of finished circuit boards in a life-

sustaining / life-supporting device.

o LHBUEOBFilsk - BFEHL VAT L
o MEVA 7 NVORBIa fha—7F
o EMMEFPEE CHER Lo —F% v hAR— FOME - S AHBEIT 2 MM

64

Numerous commercial software applications may be used as part of the quality system (e.g., a
spreadsheet or statistical package used for quality system calculations, a graphics package used for
trend analysis, or a commercial database used for recording device history records or for complaint
management). The extent of validation evidence needed for such software depends on the device
manufacturer’s documented intended use of that software. For example, a device manufacturer
who chooses not to use all the vendor-supplied capabilities of the software only needs to validate
those functions that will be used and for which the device manufacturer is dependent upon the
software results as part of production or the quality system. However, high risk applications
should not be running in the same operating environment with non-validated software functions,
even if those software functions are not used. Risk mitigation techniques such as memory
partitioning or other approaches to resource protection may need to be considered when high risk
applications and lower risk applications are to be used in the same operating environment. When
software is upgraded or any changes are made to the software, the device manufacturer should
consider how those changes may impact the “used portions” of the software and must reconfirm
the validation of those portions of the software that are used. (See 21 CFR §820.70(1).)

ZLONRY 7 Fo =TT 7V r—vasid, WEVATLAO—E L TEM D (] E A
TAFHBEICHWONDORFE Y 7 b, HEH Ry = SR 7 7 4 v Iy r—U | iR
JEDOFLERCHHIEFEEICH WO N OTHIRT — 2 X—R), TNH Y7 My =TI ERNNY T — 3
VEET UAORSHEHFIL, MaREEE NG LY 7 Fy 2T OBKT HHEBIC LV IRET D,
BIZIE, RN —ORETH Y 7 MY =2 T OETEMEH L &R Lo iae it 8 1, R 58
BRICBRE L TN 7 — h L, AR, BERREET TRED LAIWEV AT LAO—FELTOY 7 by
s TRERIEKTFEL TS, L, "IV AIZT T r—varid, NUTFT—hERTWRnWY 7k
= THEREDMEH SN T RVIRBLUCE W TS, ZILE R UBRBRICTERT 2 & Tk, A€V o
RZOMY Y —AREDOT T —F R EDY AT 7/ =y 71i1E, WU AT T r—a Ul
WIURZT IV r—a yPRRICAN L —va VREICTHWONDEE, BETLHZLENRNETH D,
VT RNT=2T BT 7T L— LY L DOEERY 7 MU =72 ENTHE, e iEER X
INOEENY 7 =270 “EHENTHWDLES” I LT, EOXIREELHEZ D0 EZE L,
HHINTZY 7 by =TSO F— 3 U R LT iude b,

6.2. DEFINED USER REQUIREMENTS = —H¥EREH

A very important key to software validation is a documented user requirements specification that

defines:

V7 2T N T = gD CHEERY—X, UT2ERETH 22—V ERMAFFEETH S -

-the “intended use” of the software or automated equipment; and

-the extent to which the device manufacturer is dependent upon that software or equipment for

production of a quality medical device.

o Y7L U7 D BT LME b L <ITHBEMLEBE

65

o MEMRLERA VKL TS, REOERESGOMGEITHEMT LY 7 b v =7 i O il

The device manufacturer (user) needs to define the expected operating environment including any

required hardware and software configurations, software versions, utilities, etc. The user also

needs to:

asBhEEE (o—9) X, REL AR 27BN 7 =T arr7 47 b—vay, Y7k
DT NR—=Tay, a—T 4 VT %, PHIENAARL— g VEEBEAERTALNERD S, 2—W
X, U TONTELHLELRD

-document requirements for system performance, quality, error handling, startup, shutdown,
security, etc.;
-identify any safety related functions or features, such as sensors, alarms, interlocks, logical

processing steps, or command sequences; and

-define objective criteria for determining acceptable performance.

o VAT LNTF—v AL WHE, =T, AF— Ty vy MU R T
FERFHZ LEFE T D

o B Y — TI—Ah ArF—uvI @wWENTREART YT avwl R—F U R ED
KRBT D RE. Rz T 5

o ZAWREIRMERRAIRET DR EERT D

The validation must be conducted in accordance with a documented protocol, and the validation
results must also be documented. (See 21 CFR §820.70(i).) Test cases should be documented
that will exercise the system to challenge its performance against the pre-determined criteria,
especially for its most critical parameters. Test cases should address error and alarm conditions,
startup, shutdown, all applicable user functions and operator controls, potential operator errors,
maximum and minimum ranges of allowed values, and stress conditions applicable to the intended
use of the equipment. The test cases should be executed and the results should be recorded and
evaluated to determine whether the results support a conclusion that the software is validated for

its intended use.

NYF—=a 0, XFkIhie7 e ha— s LT T, N F—32 a9 D oRERIZSGE S
R 5720 (See 21 CFR §820.70(G).), 7 A b7 — AL, FRICIE L5, BRI KERD D%
ERT A —=HIZK L, T A=V AEPFET DV AT LATIEITTH LI LE SIS, TANFr—2A
X, =7 =7 7—LRME AX— T v vy MUY SRR — R, AL —X
—ar hr—/b, WENARL—Z =27 — FFRMEORK « K/, 2EEOZMT 5 @@+
HARNVAFIFIZRHLT RE LD TH D, TA M —RFFETEIN, ZORFITRES L, FHiE
T, ZTORERNY 7 by =T RERTHHRICH L TR T— a3z Wi fsma BT 20 E 5 »n
2HET D,

66

A device manufacturer may conduct a validation using their own personnel or may depend on a
third party such as the equipment/software vendor or a consultant. In any case, the device

manufacturer retains the ultimate responsibility for ensuring that the production and quality system

software:

FEERILERET X, B0 EZM > T, HAWVITEE/ Y 7 h =27 XA —a Py b X H
Y — R—F = KTFEL TN T = a & {ToTChl, EDXHRGATYH., MasilhEEs X
ML EME AT LAY 7 N 2T B FORMEE -T2 & 2Rl T 2 RENELZ2A Y Z L1l 5,

-1s validated according to a written procedure for the particular intended use; and

-will perform as intended in the chosen application.

o BT LZHBRIZHTIHIFIEEIZH > TANIT—FEND
o BELET SV r— g TCRERKTAMRELZT D

The device manufacturer should have documentation including:

ARSI T OFEHA GO LELFO ¢

-defined user requirements;
-validation protocol used;
-acceptance criteria;

-test cases and results; and

-a validation summary

o EFINT-a—HYHK

o ElSNANYT—varrabha—
o AN

o TANTS—RLFER

. STl —

that objectively confirms that the software is validated for its intended use.

ZOZLIZEY, VT7 M2 TRERTOIHBIZH > TAY T — a2 LA RBICHER TS
o

6.3. VALIDATION OF OFF-THE-SHELF SOFTWARE AND AUTOMATED EQUIPMENT FT e e
VN7 e V7 b7 LB EEBONY T —v g v

Most of the automated equipment and systems used by device manufacturers are supplied by third-
party vendors and are purchased off-the-shelf (OTS). The device manufacturer is responsible for

ensuring that the product development methodologies used by the OTS software developer are

appropriate and sufficient for the device manufacturer’s intended use of that OTS software. For

67

OTS software and equipment, the device manufacturer may or may not have access to the vendor’s
software validation documentation. If the vendor can provide information about their system
requirements, software requirements, validation process, and the results of their validation, the
medical device manufacturer can use that information as a beginning point for their required
validation documentation. The vendor’s life cycle documentation, such as testing protocols and
results, source code, design specification, and requirements specification, can be useful in
establishing that the software has been validated. However, such documentation is frequently not

available from commercial equipment vendors, or the vendor may refuse to share their proprietary

information.

PBRLEEFIC LV SN D AELEBROV AT A0 E VLI, — RRU A — 2 L)t X
i, A7 %= 7 (0TS) THEASND, WaREEF L, OTS V7 My = THHEEIZL D EH
SN LRMBARITIERmN. OTS V7 MU = 7 3G 32 O BT 5 HiEICk L T T+ Th 5
ZEERFET A LICHEMEEA D, OTS V7 by =7 « HEETIL, HSRilEEERNX X —D Y 7 by
2T N T =2 a VBTV BATELYALETERVWEERDDH, XU =N AT LER, V7
Ny 2T HER, N)TF—var7mEABLONY F—va UREROERERIETE 256, ERESR
REEIL, TNLEREWEOICERENDE N F =2 ar FEa A hOBMASRE LTHHTSZ &0
TX5, TARNS B ha—LOfE R, V—2a— F, #EHMHEE, BLOERMFEER O X —0D
TATHAINILEL, VI R zT BRI T = hINTNWDLI L EZEETHDITHENLTHI LN TE
Do LinL, MEEER X =0 6DF D &5 R CEEFFHARTEE, b LI F—NEAT D #
DIEFEEETDHTHA D,

Where possible and depending upon the device risk involved, the device manufacturer should
consider auditing the vendor’s design and development methodologies used in the construction of
the OTS software and should assess the development and validation documentation generated for
the OTS software. Such audits can be conducted by the device manufacturer or by a qualified
third party. The audit should demonstrate that the vendor’s procedures for and results of the

verification and validation activities performed the OTS software are appropriate and sufficient for

the safety and effectiveness requirements of the medical device to be produced using that software.

a2 7 ORREMERIKAFMED B D RILIC IV TIE, BERILEEE 2, OTS Y 7 MU = THEIE TH W
HNDHRN X —FECHBHEROA—T v FEBEL, OTS V7 bU =7 HITERT 2% B LW
NYTF =2 ary RXa AV MEBETINENRDD, ZOLI A —T 1 v M, HaailiEEE o8 %
HHLFE-FHEICEI VTS, =T 1 v MI, XU —OFIEBLOY 7 by =T &N THLEL
T BRI O L MR ORI RE2 2723, OTS V7 b7 CEiSNEZ) 7 4 r—va B
FONY F— g AMEEDORERN, WU THSTHD I EEZFET LR T IER 5780

Some vendors who are not accustomed to operating in a regulated environment may not have a
documented life cycle process that can support the device manufacturer’s validation requirement.

Other vendors may not permit an audit. Where necessary validation information is not available

68

from the vendor, the device manufacturer will need to perform sufficient system level “black box”
testing to establish that the software meets their “user needs and intended uses.” For many
applications black box testing alone is not sufficient. Depending upon the risk of the device
produced, the role of the OTS software in the process, the ability to audit the vendor, and the
sufficiency of vendor-supplied information, the use of OTS software or equipment may or may not
be appropriate, especially if there are suitable alternatives available. The device manufacturer

should also consider the implications (if any) for continued maintenance and support of the OTS

software should the vendor terminate their support.

BH2Z T ZRETOAN L —2 g VIR T AN —i, LSO F— g v E

REVR=FTD2T7A4T7HA I NVTREAD RFXa A baFoTWRWEELH D, HHX X —
F—T 4 v MEFA LRV E L, XUF—mnb0, MERNY T —va VIEREAFTTE
g, BERRILEREFIL, YT M2 TR V=X BT LR 2T ERE T 570, T
PWIRVAT KAL) T T IRy IR TARNETIMLBENTTL D, Z<DOT TV r— a1l
WT, 799 7Ry 7 AT A RET TS TRy, ESNEZT A 2ADY 27 12k-T, 7 utk
ATODOTS V7 bU =T OEE, XU F—F—F 41y bghl, XU —#ftofFHR, OTS YV 7 hU =
7THLIFEEOHBIL, @O LARINDGE L IV, KR, NEBEOBRIRENE L CWD581EE
ITRVWEALDH D, HIRELEEE T, Mt DA T T v AT DR L N =N R — b &k
TTL5500TS Y7 hU =7 Y AR—=MEDORED HNEZIZOWTERE LRITHIEZR 57220,

For some off-the-shelf software development tools, such as software compilers, linkers, editors,
and operating systems, exhaustive black-box testing by the device manufacturer may be
impractical. Without such testing — a key element of the validation effort — it may not be possible
to validate these software tools. However, their proper operation may be satisfactorily inferred
by other means. For example, compilers are frequently certified by independent third-party
testing, and commercial software products may have “bug lists”, system requirements and other
operational information available from the vendor that can be compared to the device
manufacturer’s intended use to help focus the “black-box” testing effort. Off-the-shelf operating
systems need not be validated as a separate program. However, system-level validation testing of
the application software should address all the operating system services used, including
maximum loading conditions, file operations, handling of system error conditions, and memory

constraints that may be applicable to the intended use of the application program.

VIR 2T DAL A7, Vodi— =T 44— FX—2a VAT AREFT -z
7 V7 My TR =K L, B RIEER L OMERN T 7 vy I ARy 7 AT A MK, FEHWT
BB LRV, TOXEIRTARRUIC, NV T —va AMEEOEERERIT, Y7 MU =T YV —
NERYF— R TERONE Livewy, LvL, BYRAXL— 3 F, o FETHICHER S
5%%Lhﬁwo%zﬁ\:yﬂ4ﬁﬁﬁibt%;ﬁ72b_%ﬁém\m%/7b?:7@%ﬁ
RTDY AR VAT LER, ZLTRUA =D ATAREREOMA L —2 3 UIEH, ZOF

I amRE R H OB TOHBRE LMK TH2 LT, 77 v 7Ry I R” TAMERICESRZHTHD

69

WCERTHD, 7 Yo vz 7 e AR —2a VAT A DOT 0 7T HE L TR F—hE
NHMEFIR, L, 77V 5—var V7 N2 T DVAT ALY F—2 3 7 A ME,
TV r—var7u g AOBERKT L HRICHE LItk KGHARS, Ty A VAR —va s VA
T AT T —FMERE, AF VG EHER I 2L XL —1 3 VU RAT ACRHL L2 TR e 572
[

70

