カートをみる マイページへログイン ご利用案内 お問い合せ お客様の声 サイトマップ

当社コンサルテーションへのご要望・ご質問・お問合せはこちら

HOME > セミナー > 環境・資源

商品一覧

並び順:

説明付き / 写真のみ

1件〜5件 (全5件)

セミナーアイコン(青)

(8/4) 熱可塑性エラストマーの技術トレンドと市場動向

48,600円(税込)
 熱可塑性エラストマー(TPE:Thermo Plastic Elastomers)とは、加熱すると溶融して再度成形加工が可能な柔らかい樹脂のことである。柔らかいが加熱しても溶融しないため再度成形することができないタイヤの様な架橋ゴムとは区分けされてきた。しかし最近ウレタン系、シリコーン系、アクリル系等で架橋しても柔らかいエラストマーが登場してソフトマテリアルと総称することが多いため、本講座も従来の熱可塑性エラストマーだけでなくソフトマテリアルに広げてセミナーを進めたい。
 自動車内装材・住宅・医療・食品包装材・農ビ等には、従来塩化ビニル樹脂が用いられてきた。塩化ビニル樹脂は可塑剤を混ぜて軟質塩ビ(塩化ビニール)にして用いられることが多い。可塑剤にはアレルギー物質として懸念されているフタル酸エステル(Phtalate)が主に用いられてきたが、最近ではフタル酸エステル以外の可塑剤に代替えが進み、更に塩化ビニル樹脂からポリオレフィン系等の熱可塑性エラストマーに代りつつある。表層にはDMF等を含んだ溶剤系表面処理剤が塗工されてきたが、最近では水系が多く用いられ、乾燥方法も熱風から赤外線に代わっている。さらに一部は紫外線、電子線架橋型になり、装置の低消費エネルギー・コンパクト・クリーン化が容易になっている。
 またユーザーの要求は多様化しており(自分だけのもの)、プリントロールで大量生産する時代は終わり、版レスで1個造りが可能なインクジェットプリンターや3Dプリンターに変化している。更に3Dインクジェットプリンターが登場して、UV硬化システムにもかかわらず柔らかいカラフルな凹凸模様が簡単に造形できるようになり、顧客の多様性に迅速に対応が可能になった。更にIoTが進み情報分析(顧客ニーズ)、注文、生産、品質保証、故障予知、修正の自動化が可能になりつつある。本講座では最新情報をもとにトレンドを明確にして、自動車産業を中心に熱可塑性エラストマーの応用と展開を解説する。
セミナーアイコン(青)

(10/5) CO2由来樹脂の研究開発動向

48,600円(税込)
 産業活動により排出された二酸化炭素が地球温暖化に関連しているかもしれないことから、二酸化炭素は,その潜在的な有用性にもかかわらず、不要なもの・悪いものという印象をもたれている。本講演では、地球温暖化問題と化石資源枯渇問題の解決に直接的に寄与することが期待される、二酸化炭素の化学的利用に関する技術,実例を概観し、紹介する。
セミナーアイコン(青)

(11/9) ゴムの配合設計力向上と混錬加工技術

48,600円(税込)
 日本のゴム産業に“負のDNA” を探すと、経験則至上主義と科学的思考からの離反が挙げられます。黎明期に明治政府の育成対象から外れたゴム工業は、金銭目的の配合師の暗躍などで、客観的な技術論の交流が失われたままの土壌が形成され、それは現在まで尾を引いています。
 本講座では「ゴム技術の総体を科学的思考と共に向上させる」ことを目的にプログラムを組みました。特に、配合設計と混練加工が抱える共通項的な問題点とその解決策を具体的に提示します。また、ひとつの会社に属していては接することのできない、しかし応用性の高いゴム技術を詳説します。これらの情報を包括的に学ぶことで、皆さんの会社に適したゴム技術力を増強する具体的手段を見つけていただくことを講義の主眼に置いています。
セミナーアイコン(青)

(9/12) ポリマー/添加剤の赤外吸収スペクトルを読む

54,000円(税込)
 赤外法はポリマーや添加剤の定性分析で最も多用されているが、企業の分析担当者からは次の声を聞くことが少なくない:「コンピュータ検索では十分ではないため自分でもスペクトルを読めるようになりたいが、教科書はなく学ぶ機会もない」
 このような要望に応えるべく企画されたセミナーで、対象は「プラスチックとエラストマー」および「プラスチック用添加剤」に特化し、技術内容は「赤外スペクトルの読み方」に特化している。
 一般論ではなく、講師が独自のデータ集刊行のため実測したスペクトル(ポリマー580種類、添加剤630種類)を基に得た具体的な知見が中心である。説明に加え、指針をまとめた資料(「実践ガイド」)も提供。そのまま活用できる。
セミナーアイコン(青)

(9/19) セルロース・キチンナノイウィスカの特性と応用〜CNFとの違い

43,200円(税込)
 天然セルロースの結晶性微細繊維であるセルロースミクロフィブリルを長繊維形態のまま抽出したセルロースナノファイバー(CNF)は天然由来の高強度材料として盛んに研究され、政府の成長戦略にも盛り込まれるなど注目が集まっている。一方で、天然セルロースやキチン試料を塩酸・硫酸などで加水分解することによりこのミクロフィブリルは短く寸断され、高結晶性領域の棒状微結晶であるセルロース/キチンナノウィスカー(CNWs/ChNWs)を得ることができる。これらのナノウィスカーは、長さを除けばCNFと同等の形状や特性を持ち、また液晶形成能や光学的特性など力学物性以外にも興味ある挙動を示す。ナノウィスカーの分散性、それに伴う粘性や液晶形成能は種々の表面修飾(様々な荷電基の段階的導入、高分子鎖グラフト)によって制御が可能である。CNWはCNFと似た性質を有しながら、異なる特性を持つ高機能性材料を創成できる可能性を秘めている。
 本講演では、CNWs/ChNWsとはどのようなものか、特にその調製法とCNFとの違いについて焦点を当てて解説し、続いてこれらのコロイドとしての分散性の制御を、静電安定化および立体安定化という2種の原理に基づいて解説する。コロイド分散系であるCNWs/ChNWsの使いこなしのカギは分散性の制御にかかっており、その実現のためのCNWs系特有の手法について、当研究室からの成果を中心に紹介する。さらに、CNWs/ChNWsの機能性材料への応用例、特に複合材料のナノフィラーとしての利用法を中心に紹介する。また、当研究室の研究の成果から最近生まれた、大量製造可能な新規乾燥CNWs粉末の製造と供給についても紹介する予定である。

1件〜5件 (全5件)